Objectives/Expected Outcomes: To develop specialist knowledge and understanding of Unmanned Air Vehicle (UAV) systems. To be able to assess, evaluate and perform preliminary design analysis on complete UAV systems. Syllabus summary: This course will focus on understanding UAVs from a system perspective. It will consider a variety of key UAV subsystems and look at how these interact to determine the overall effectiveness of a particular UAV system for a given mission. Based on this understanding it will also look at the evaluation and design of a complete UAV system for a given mission specification. Some of the primary UAV subsystems that will be considered in this course are as follows. Airframe and Propulsion: The role of the basic airframe/propulsion subsystem of the UAV in setting operational mission bounds for different classes of UAVs, from micro UAVs, through to larger vehicles. Flight Control and Avionics: Typical UAV primary flight control systems; Sensor requirements to support different levels of operation (eg auto-land vs remote-control landing etc. ,); Redundancy requirements. Navigation: Navigation requirements; inertial navigation; aiding via use of GPS; strategies to combat GPS failures. Typical Payloads: Electro-Optical (EO); Infra-Red (IR); Electronic Warfare (EW); Electronic Surveillance (ES); Radar and others. Payload stabilization and pointing accuracy requirements. Air-Ground Communication Link: Typical Civilian and Military communication links. Range, Security, Bandwidth, Cost issues. Ground Control Station(GCS): Air-vehicle monitoring; payload monitoring; data dissemination; control of multiple vehicles. The course will also consider other general issues associated with modern UAV systems including multi-vehicle systems, certification of UAV systems and others. As part of the course students will spend 1 day operating a UAV system, with their own mission guidance/mission control software on board.
Unit details and rules
Academic unit | Aerospace, Mechanical and Mechatronic |
---|---|
Credit points | 6 |
Prerequisites
?
|
(AERO3260 OR AERO9260) AND (AERO3460 OR AERO9460) AND (AERO3360 OR AERO9360) AND (AERO3560 OR AERO9560) |
Corequisites
?
|
None |
Prohibitions
?
|
None |
Assumed knowledge
?
|
AERO1560, AERO1400, AMME2700, AERO3460, AERO3560, AERO3260, AERO3261 and AERO4460. |
Available to study abroad and exchange students | Yes |
Teaching staff
Coordinator | KC Wong, kc.wong@sydney.edu.au |
---|---|
Lecturer(s) | KC Wong, kc.wong@sydney.edu.au |