Skip to main content
Unit of study_

AERO8261: Propulsion

2025 unit information

This unit aims to develop and understanding of aircraft propulsion systems. Students will learn to solve problems related to the analysis and selection of various propulsion systems in use- propellers, gas turbines, etc. The topics covered include: Propulsion unit requirements for subsonic and supersonic flight; thrust components, efficiencies, additive drag of intakes; Piston engine components and operation; Propeller theory; Operation, components and cycle analysis of gas turbine engines, turbojets, turbofans, turboprops, ramjets; Components: compressor, fan, burner, turbine, nozzle; Efficiency of components: Off-design considerations; Future directions: minimisation of noise and pollution, scram-jets, hybrid engines.

Unit details and rules

Managing faculty or University school:

Engineering

Study level Postgraduate
Academic unit Aerospace, Mechanical and Mechatronic
Credit points 6
Prerequisites:
? 
None
Corequisites:
? 
None
Prohibitions:
? 
AERO9261
Assumed knowledge:
? 
Mathematics and Physics to a level of Bachelor of Science or equivalent. Good knowledge of fluid dynamics and thermodynamics

At the completion of this unit, you should be able to:

  • LO1. write an engineering report on an experimental test
  • LO2. discuss and present engine performance and design data in a written report
  • LO3. explain engine performance and different engine types in final exam
  • LO4. design and select a gas turbine engine type for a given application
  • LO5. select appropriate engine cycles and propellers for a given aircraft and flight conditions
  • LO6. carry out a cycle analysis of a gas turbine engine, including ramjet and turbo-fan engines
  • LO7. understand the working of various components of gas turbines and how their interaction results in the overall engine performance
  • LO8. identify relevant data to estimate performance of existing aircraft engines
  • LO9. solve systems of non-linear equations governing propeller performance
  • LO10. solve thermodynamic cycle calculations for both design point and off-design calculations.

Unit availability

This section lists the session, attendance modes and locations the unit is available in. There is a unit outline for each of the unit availabilities, which gives you information about the unit including assessment details and a schedule of weekly activities.

The outline is published 2 weeks before the first day of teaching. You can look at previous outlines for a guide to the details of a unit.

Session MoA ?  Location Outline ? 
Semester 1 2024
Normal day Camperdown/Darlington, Sydney
Session MoA ?  Location Outline ? 
Semester 1 2025
Normal day Camperdown/Darlington, Sydney
Outline unavailable
Session MoA ?  Location Outline ? 
Semester 1 2020
Normal day Camperdown/Darlington, Sydney
Semester 1 2021
Normal day Camperdown/Darlington, Sydney
Semester 1 2021
Normal day Remote
Semester 1 2022
Normal day Camperdown/Darlington, Sydney
Semester 1 2022
Normal day Remote
Semester 1 2023
Normal day Camperdown/Darlington, Sydney

Find your current year census dates

Modes of attendance (MoA)

This refers to the Mode of attendance (MoA) for the unit as it appears when you’re selecting your units in Sydney Student. Find more information about modes of attendance on our website.