This unit aims to teach fundamentals of modern numerical and analytical techniques for evaluating stresses, strains, deformations and strengths of representative aerospace structures. In particular the focus is on developing an understanding of: Fundamental concepts and formulations of the finite element methods for basic structural analysis; Elements for typical aerospace structures- such as beams/frames, plates/shells, and their applications and limitations; Finite element techniques for various types of problems pertinent to aerospace structures; and developing hands-on experience of using selected commercial finite element analysis program. At the end of this unit of study the following will have been covered: Introduction to Finite Element Method for modern structural and stress analysis; One-dimensional rod elements; Generalization of FEM for elasticity; Two- and three-dimensional trusses; FEA for beams and frames in 2D and 3D; Two-dimensional problems using constant strain triangular elements; The two-dimensional isoparametric elements; Plates and shells elements and their applications; FEA for axisymmetric shells and pressure vessels, shells of revolution; FEA for axisymmetric solids subjected to axi-symmetric loading; FEA for structural dynamics, eigenvalue analysis, modal response, transient response; Finite element analysis for stress stiffening and buckling of beams, plates and shells; Three-dimensional problems in stress analysis; Extensions to the element library, higher order elements, special elements; Constraints; FEA modeling strategy; FEA for heat conduction; FEA for non-linear material and geometric analysis.
Unit details and rules
Academic unit | Aerospace, Mechanical and Mechatronic |
---|---|
Credit points | 6 |
Prerequisites
?
|
None |
Corequisites
?
|
None |
Prohibitions
?
|
AERO4360 or AERO5360 |
Assumed knowledge
?
|
AERO9360 or AERO8360 or MECH9361 or MECH8361. Linear algebra, calculus and partial differential equations, basic knowledge in solid mechanics 1 (AERO2301), basic knowledge in elasticity |
Available to study abroad and exchange students | No |
Teaching staff
Coordinator | Liyong Tong, liyong.tong@sydney.edu.au |
---|---|
Lecturer(s) | Liyong Tong, liyong.tong@sydney.edu.au |