Biotechnological advances have given rise to an explosion of original and shared public data relevant to human health. These data, including the monitoring of expression levels for thousands of genes and proteins simultaneously, together with multiple databases on biological systems, now promise exciting, ground-breaking discoveries in complex diseases. Critical to these discoveries will be our ability to unravel and extract information from these data. In this unit, you will develop analytical skills required to work with data obtained in the medical and diagnostic sciences. You will explore clinical data using powerful, state of the art methods and tools. Using real data sets, you will be guided in the application of modern data science techniques to interrogate, analyse and represent the data, both graphically and numerically. By analysing your own real data, as well as that from large public resources you will learn and apply the methods needed to find information on the relationship between genes and disease. Leveraging expertise from multiple sources by working in team-based collaborative learning environments, you will develop knowledge and skills that will enable you to play an active role in finding meaningful solutions to difficult problems, creating an important impact on our lives.
Unit details and rules
Academic unit | Science Faculty |
---|---|
Credit points | 6 |
Prerequisites
?
|
None |
Corequisites
?
|
None |
Prohibitions
?
|
None |
Assumed knowledge
?
|
Exploratory data analysis, sampling, simple linear regression, t-tests, confidence intervals and chi-squared goodness of fit tests, familiar with basic coding, basic linear algebra. |
Available to study abroad and exchange students | Yes |
Teaching staff
Coordinator | Grant Parnell, grant.parnell@sydney.edu.au |
---|