This unit will build on knowledge in materials science and merge knowledge in the biomedical sciences, in particular with the aspects of the human anatomy and physiology. The students will appreciate that developing engineering solutions to solve problems associated with the human body will bring forward a unique set of constraints and conditions not found in alternate contexts. For example, the human body is composed of living constituents called 'cells' that produce matter called 'tissues' in a structured manner to form functioning systems called 'organs'. The function(s) of these cells is heavily dependent on the surrounding physical and chemical cues - the parameters (for which there are multiple) of these cues have to be 'right' or 'optimal' for the cells to function well to produce the correct type of tissue for the correct functioning of the organ. A biomedical engineering solution (e.g. an implantable or wearable device) to treat, monitor or diagnose a disease or medical condition must take these parameters into serious consideration.
Unit details and rules
Academic unit | Biomedical Engineering |
---|---|
Credit points | 6 |
Prerequisites
?
|
None |
Corequisites
?
|
None |
Prohibitions
?
|
AMME5961 or AMME9961 or MECH4961 or BMET4961 or BMET3961 |
Assumed knowledge
?
|
Chemistry, biology, materials engineering, and engineering design at least at the 1000-level. AMME9901 or BMET9901 or 6 credit points of 1000-level biology, 6 credit points of 1000-level chemistry, 6 credit points of 1000-level materials science, 6 credit points of engineering design. |
Available to study abroad and exchange students | No |
Teaching staff
Coordinator | Young No, young.no@sydney.edu.au |
---|---|
Lecturer(s) | Young No, young.no@sydney.edu.au |
Tutor(s) | Pooria Lesani, pooria.lesani@sydney.edu.au |
Matilda Longfield, matilda.longfield@sydney.edu.au |