Recent years have brought a rapid growth in the amount and complexity of data in biostatistical applications. Among others, data collected in imaging, genomic, health registries, wearables, call for new statistical techniques in both predictive and descriptive learning. Machine learning algorithms for classification and prediction, complement classical statistical tools in the analysis of these data. This unit will cover several modern methods particularly useful for big and complex data. Topics include classification trees, random forests, model selection, lasso, bootstrapping, cross-validation, generalised additive model, splines, among others. The statistical software R will be used throughout the unit.
Unit details and rules
Academic unit | Public Health |
---|---|
Credit points | 6 |
Prerequisites
?
|
BSTA5007 or PUBH5217 |
Corequisites
?
|
None |
Prohibitions
?
|
None |
Assumed knowledge
?
|
None |
Available to study abroad and exchange students | No |
Teaching staff
Coordinator | Armando Teixeira-Pinto, armando.teixeira-pinto@sydney.edu.au |
---|