Skip to main content
Unit outline_

CHNG2803: Heat and Mass Transfer

Semester 1, 2022 [Normal day] - Camperdown/Darlington, Sydney

This unit of study teaches principles of heat and mass transfer required for chemical and biomolecular engineering. It covers steady and transient conduction and diffusion, convective transport of heat and mass, and radiative heat transfer. It runs concurrently with CHNG2801 (Fluid Mechanics) to provide students with the tools and know-how to tackle engineering problems related to transport phenomena. This unit of study also includes project-based study components including a research project on heat transfer phenomena in biological systems and a lab session on mass transfer. Students will develop a physical understanding of the underlying phenomena and gain the ability to solve real heat and mass transfer problems of engineering significance.

Unit details and rules

Academic unit Chemical and Biomolecular Engineering
Credit points 6
Prerequisites
? 
(MATH1001 or MATH1021 or MATH1901 or MATH1921 or MATH1931) and (MATH1002 or MATH1902) and (MATH1003 or MATH1023 or MATH1903 or MATH1923) and (MATH1005 or MATH1905 or BUSS1020) and (ENGG1801 or ENGG1810) and CHNG1103
Corequisites
? 
None
Prohibitions
? 
None
Assumed knowledge
? 

It is assumed that students will be concurrently enrolled in or have already completed: CHNG2801 or equivalent, and (CHNG2802 or MATH2XXX)

Available to study abroad and exchange students

Yes

Teaching staff

Coordinator Yuan Chen, yuan.chen@sydney.edu.au
Lecturer(s) Yuan Chen, yuan.chen@sydney.edu.au
Type Description Weight Due Length
Final exam (Record+) Type B final exam Final Exam
the formal final exam covers all course contents
60% Formal exam period 2 hours
Outcomes assessed: LO3 LO4 LO5 LO6 LO7 LO8
Small continuous assessment In-class exercises
online quizzes, multiple times
15% Multiple weeks 5 min each
Outcomes assessed: LO4 LO8 LO7 LO6
Assignment Homework
weekly homework
15% Multiple weeks n/a
Outcomes assessed: LO3 LO4 LO5 LO6 LO7 LO8
Assignment heat/mass transfer lab report
submit lab report for heat and mass transfer experiments
6% Multiple weeks n/a
Outcomes assessed: LO1 LO2 LO4
Assignment Bio-heat/mass transfer essay
essay on bio-heat/mass transfer
4% Week 09 n/a
Outcomes assessed: LO1 LO8 LO2
Type B final exam = Type B final exam ?

Assessment summary

Detailed information for each assessment can be found on Canvas.

Assessment criteria

The University awards common result grades, set out in the Coursework Policy 2014 (Schedule 1).

As a general guide, a high distinction indicates work of an exceptional standard, a distinction a very high standard, a credit a good standard, and a pass an acceptable standard.

Result name

Mark range

Description

High distinction

85 - 100

 

Distinction

75 - 84

 

Credit

65 - 74

 

Pass

50 - 64

 

Fail

0 - 49

When you don’t meet the learning outcomes of the unit to a satisfactory standard.

For more information see guide to grades.

Late submission

In accordance with University policy, these penalties apply when written work is submitted after 11:59pm on the due date:

  • Deduction of 5% of the maximum mark for each calendar day after the due date.
  • After ten calendar days late, a mark of zero will be awarded.

Academic integrity

The Current Student website provides information on academic integrity and the resources available to all students. The University expects students and staff to act ethically and honestly and will treat all allegations of academic integrity breaches seriously.

We use similarity detection software to detect potential instances of plagiarism or other forms of academic integrity breach. If such matches indicate evidence of plagiarism or other forms of academic integrity breaches, your teacher is required to report your work for further investigation.

Use of generative artificial intelligence (AI) and automated writing tools

You may only use generative AI and automated writing tools in assessment tasks if you are permitted to by your unit coordinator. If you do use these tools, you must acknowledge this in your work, either in a footnote or an acknowledgement section. The assessment instructions or unit outline will give guidance of the types of tools that are permitted and how the tools should be used.

Your final submitted work must be your own, original work. You must acknowledge any use of generative AI tools that have been used in the assessment, and any material that forms part of your submission must be appropriately referenced. For guidance on how to acknowledge the use of AI, please refer to the AI in Education Canvas site.

The unapproved use of these tools or unacknowledged use will be considered a breach of the Academic Integrity Policy and penalties may apply.

Studiosity is permitted unless otherwise indicated by the unit coordinator. The use of this service must be acknowledged in your submission as detailed on the Learning Hub’s Canvas page.

Outside assessment tasks, generative AI tools may be used to support your learning. The AI in Education Canvas site contains a number of productive ways that students are using AI to improve their learning.

Simple extensions

If you encounter a problem submitting your work on time, you may be able to apply for an extension of five calendar days through a simple extension.  The application process will be different depending on the type of assessment and extensions cannot be granted for some assessment types like exams.

Special consideration

If exceptional circumstances mean you can’t complete an assessment, you need consideration for a longer period of time, or if you have essential commitments which impact your performance in an assessment, you may be eligible for special consideration or special arrangements.

Special consideration applications will not be affected by a simple extension application.

Using AI responsibly

Co-created with students, AI in Education includes lots of helpful examples of how students use generative AI tools to support their learning. It explains how generative AI works, the different tools available and how to use them responsibly and productively.

WK Topic Learning activity Learning outcomes
Week 01 Heat diffusion equation. Boundary and initial conditions Lecture and tutorial (2 hr) LO1 LO2 LO3 LO4 LO5 LO6 LO7
Modes of heat transfer Lecture and tutorial (1 hr) LO1 LO2 LO3 LO4 LO5 LO6 LO7
Week 02 Thermal resistances Lecture and tutorial (2 hr) LO1 LO2 LO3 LO4 LO5 LO6 LO7
Conduction with heat generation Lecture and tutorial (1 hr) LO1 LO2 LO3 LO4 LO5 LO6 LO7
Week 03 Extended surface (fins) Lecture and tutorial (2 hr) LO1 LO2 LO3 LO4 LO5 LO6 LO7
2D conduction Lecture and tutorial (1 hr) LO1 LO2 LO3 LO4 LO5 LO6 LO7
Week 04 Semi-infinite solid Lecture and tutorial (1 hr) LO1 LO2 LO3 LO4 LO5 LO6 LO7
Transient conduction. Lumped capacity analysis Lecture and tutorial (2 hr) LO1 LO2 LO3 LO4 LO5 LO6 LO7
Week 05 External flow correlations Lecture and tutorial (1 hr) LO1 LO2 LO3 LO4 LO5 LO6 LO7
Convection boundary layer. Dimensionless equations Lecture and tutorial (2 hr) LO1 LO2 LO3 LO4 LO5 LO6 LO7
Week 06 Natural convection Lecture and tutorial (1 hr) LO1 LO2 LO3 LO4 LO5 LO6 LO7
Internal forced convection Lecture and tutorial (2 hr) LO1 LO2 LO3 LO4 LO5 LO6 LO7
Week 07 Condensation Lecture and tutorial (2 hr) LO1 LO2 LO3 LO4 LO5 LO6 LO7
Boiling Lecture and tutorial (1 hr) LO1 LO2 LO3 LO4 LO5 LO6 LO7
Week 08 Radiation Lecture and tutorial (2 hr) LO1 LO2 LO3 LO4 LO5 LO6 LO7
Blackbody exchange Lecture and tutorial (1 hr) LO1 LO2 LO3 LO4 LO5 LO6 LO7
Week 09 Heat transfer equipment Lecture and tutorial (1 hr) LO1 LO2 LO3 LO4 LO5 LO6 LO7
Heat exchanger calculations Lecture and tutorial (2 hr) LO1 LO2 LO3 LO4 LO5 LO6 LO7
Week 10 Design of heat exchangers Lecture and tutorial (2 hr) LO1 LO2 LO3 LO4 LO5 LO6 LO7
Introduction of tube-shell heat exchangers Lecture and tutorial (1 hr) LO1 LO2 LO3 LO4 LO5 LO6 LO7
Week 11 Diffusion mass transfer Lecture and tutorial (2 hr) LO1 LO2 LO8
Introduction to mass transfer Lecture and tutorial (1 hr) LO1 LO2 LO8
Week 12 Transient diffusion Lecture and tutorial (2 hr) LO1 LO2 LO8
Convective mass transfer Lecture and tutorial (1 hr) LO1 LO2 LO8
Week 13 Simultaneous heat and mass transfer Lecture and tutorial (2 hr) LO1 LO2 LO8
Interphase mass transfer Lecture and tutorial (1 hr) LO1 LO2 LO8

Attendance and class requirements

Students must attend lectures, tutorials and lab sessions. Attendance may be taken regularly. 

Study commitment

Typically, there is a minimum expectation of 1.5-2 hours of student effort per week per credit point for units of study offered over a full semester. For a 6 credit point unit, this equates to roughly 120-150 hours of student effort in total.

Required readings

All readings for this unit can be accessed through the Library eReserve, available on Canvas.

  • Fundamentals of Heat and Mass Transfer, Author: Frank P. Incropera and David P. DeWitt Publisher: John Wiley & Sons
  • Fundamentals of Momentum, Heat, and Mass Transfer. Author: J. R. Welty, C. E. Wicks, R. E. Wilson, and G. Rorrer. Publisher: John Wiley & Sons

Learning outcomes are what students know, understand and are able to do on completion of a unit of study. They are aligned with the University's graduate qualities and are assessed as part of the curriculum.

At the completion of this unit, you should be able to:

  • LO1. report findings and synthesise conclusions accurately and informatively
  • LO2. work creatively and systematically with others in ensuring correct procedures and accurate results
  • LO3. design heat exchange equipment using overall heat transfer coefficient, fouling factors, LMTD, F-factor, equipment selection, insulation
  • LO4. compute heat transfer rate and/or temperature distribution for processes involving heat transfer
  • LO5. develop representative models of real processes and draw conclusion from analysis of pressure drop, fouling effects, performance evaluation (NTU), and changes in parameters
  • LO6. understand the mechanisms of heat transfer without phase change, including thermal conductivity, heat capacity, conduction, convection, free/force heat transfer coefficients/correlations, radiation, and combinations thereof
  • LO7. understand the mechanisms of heat transfer with phase change, including latent heat, boiling and condensation
  • LO8. understand the mechanisms of mass transfer, including diffusion mass transfer, transient diffusion, interphase mass transfer.

Graduate qualities

The graduate qualities are the qualities and skills that all University of Sydney graduates must demonstrate on successful completion of an award course. As a future Sydney graduate, the set of qualities have been designed to equip you for the contemporary world.

GQ1 Depth of disciplinary expertise

Deep disciplinary expertise is the ability to integrate and rigorously apply knowledge, understanding and skills of a recognised discipline defined by scholarly activity, as well as familiarity with evolving practice of the discipline.

GQ2 Critical thinking and problem solving

Critical thinking and problem solving are the questioning of ideas, evidence and assumptions in order to propose and evaluate hypotheses or alternative arguments before formulating a conclusion or a solution to an identified problem.

GQ3 Oral and written communication

Effective communication, in both oral and written form, is the clear exchange of meaning in a manner that is appropriate to audience and context.

GQ4 Information and digital literacy

Information and digital literacy is the ability to locate, interpret, evaluate, manage, adapt, integrate, create and convey information using appropriate resources, tools and strategies.

GQ5 Inventiveness

Generating novel ideas and solutions.

GQ6 Cultural competence

Cultural Competence is the ability to actively, ethically, respectfully, and successfully engage across and between cultures. In the Australian context, this includes and celebrates Aboriginal and Torres Strait Islander cultures, knowledge systems, and a mature understanding of contemporary issues.

GQ7 Interdisciplinary effectiveness

Interdisciplinary effectiveness is the integration and synthesis of multiple viewpoints and practices, working effectively across disciplinary boundaries.

GQ8 Integrated professional, ethical, and personal identity

An integrated professional, ethical and personal identity is understanding the interaction between one’s personal and professional selves in an ethical context.

GQ9 Influence

Engaging others in a process, idea or vision.

Outcome map

Learning outcomes Graduate qualities
GQ1 GQ2 GQ3 GQ4 GQ5 GQ6 GQ7 GQ8 GQ9

This section outlines changes made to this unit following staff and student reviews.

No changes have been made since this unit was last offered。

Work, health and safety

Students must wear lab coat and safety goggle for lab sessions. 

Disclaimer

The University reserves the right to amend units of study or no longer offer certain units, including where there are low enrolment numbers.

To help you understand common terms that we use at the University, we offer an online glossary.