Skip to main content
Unit outline_

CHNG4802: Chemical Engineering Design A

Semester 1, 2022 [Normal day] - Camperdown/Darlington, Sydney

In the overall design process, chemical engineers must clearly understand the (often complex) interactions and trade-offs that occur between technical, economic, social and environmental considerations. The capstone design projects are spread over two units of study (Chemical Engineering Design A and B) run in first and second semester. These units of study build on concepts in each of these areas introduced in previous years but with an emphasis on their successful integration within a comprehensive design activity. The primary aim of the first unit of study (Chemical Engineering Design A) is to consider the challenge of process selection and feasibility including both technical and broader issues- with an emphasis on creating and evaluating a range of alternative options that exist at both the unit operation and complete flowsheet levels. The primary emphasis in the subsequent unit of study (Chemical Engineering Design B) is on process design and including how non-technical considerations affect the final process design and its operation. By the end of both units of study a student should be able to develop a wide range of alternative conceptual designs for a given product specification and market analysis, have an appreciation of how to evaluate process alternatives at the conceptual level with a view to creating a 'short-list' worthy of more detailed technical investigation, be familiar with the use of process flowsheeting software to compare alternative designs , appreciate the fact that technical considerations are only one component in an overall successful design project and be able to clearly present the results from both individual and group work in oral/written formats. This unit of study is part of an integrated (two semester) fourth year program in chemical engineering design whose overarching aim is to complete the 'vertical integration' of knowledge- one of the pillars on which this degree program is based.

Unit details and rules

Academic unit Chemical and Biomolecular Engineering
Credit points 6
Prerequisites
? 
CHNG3801 AND CHNG3804 AND CHNG3806
Corequisites
? 
CHNG3802 AND CHNG3803 AND CHNG3805
Prohibitions
? 
CHNG4203
Assumed knowledge
? 

None

Available to study abroad and exchange students

Yes

Teaching staff

Coordinator John Kavanagh, john.kavanagh@sydney.edu.au
Lecturer(s) Graham Madsen, graham.madsen@sydney.edu.au
Tutor(s) John Kavanagh, john.kavanagh@sydney.edu.au
Type Description Weight Due Length
Assignment group assignment Report
Design Report
85% Week 12
Due date: 19 May 2022 at 16:00
n/a
Outcomes assessed: LO1 LO2 LO3 LO4 LO5 LO6 LO7 LO8 LO9
Online task Design Review
Design Review based on design project take home in 2021 due to COVID-19
15% Week 13
Due date: 23 May 2022 at 09:00

Closing date: 23 May 2022
2 hours
Outcomes assessed: LO2 LO3 LO4 LO5 LO6 LO7 LO8 LO9
group assignment = group assignment ?

Assessment summary

  • Report: Students will undertake the design of a coffee processing plant. The assessment will be based on the groups engineering drawings, calculations and written report. Students will work in groups of three, and each group will be required to make intermediate submissions, as listed in the detailed instruction pack available on Canvas. Students will then be required to submit a final report which should incorporate the feedback provided with each preliminary submission. Each group will provide information on individual contributions to each section and students will also peer review the contribution of their team members in a confidential report. Students should therefore be aware that the same mark will not necessarily be given to all members of a group and marking will be based on the quality and quantity of work contributed by each team member.
  • Design Review: Students will be required to demonstrate what they have learnt about the design process in general, together with technical aspects relevant to the coffee processing plant. Student’s general uptake of theory, knowledge and synthesis acquired from the coffee processing plant assignment will be assessed.

 Detailed information for each assessment can be found on Canvas.

Assessment criteria

The University awards common result grades, set out in the Coursework Policy 2014 (Schedule 1).

As a general guide, a high distinction indicates work of an exceptional standard, a distinction a very high standard, a credit a good standard, and a pass an acceptable standard.

Result name

Mark range

Description

High distinction

85 - 100

Excellent overall process design and demonstrated individual understanding

Distinction

75 - 84

Very Good overall process design and demonstrated individual understanding

Credit

65 - 74

Good overall process design and demonstrated individual understanding

Pass

50 - 64

Reasonable overall process design and demonstrated individual understanding

Fail

0 - 49

When you don’t meet the learning outcomes of the unit to a satisfactory standard.

For more information see guide to grades.

Late submission

In accordance with University policy, these penalties apply when written work is submitted after 11:59pm on the due date:

  • Deduction of 5% of the maximum mark for each calendar day after the due date.
  • After ten calendar days late, a mark of zero will be awarded.

Academic integrity

The Current Student website provides information on academic integrity and the resources available to all students. The University expects students and staff to act ethically and honestly and will treat all allegations of academic integrity breaches seriously.

We use similarity detection software to detect potential instances of plagiarism or other forms of academic integrity breach. If such matches indicate evidence of plagiarism or other forms of academic integrity breaches, your teacher is required to report your work for further investigation.

Use of generative artificial intelligence (AI) and automated writing tools

You may only use generative AI and automated writing tools in assessment tasks if you are permitted to by your unit coordinator. If you do use these tools, you must acknowledge this in your work, either in a footnote or an acknowledgement section. The assessment instructions or unit outline will give guidance of the types of tools that are permitted and how the tools should be used.

Your final submitted work must be your own, original work. You must acknowledge any use of generative AI tools that have been used in the assessment, and any material that forms part of your submission must be appropriately referenced. For guidance on how to acknowledge the use of AI, please refer to the AI in Education Canvas site.

The unapproved use of these tools or unacknowledged use will be considered a breach of the Academic Integrity Policy and penalties may apply.

Studiosity is permitted unless otherwise indicated by the unit coordinator. The use of this service must be acknowledged in your submission as detailed on the Learning Hub’s Canvas page.

Outside assessment tasks, generative AI tools may be used to support your learning. The AI in Education Canvas site contains a number of productive ways that students are using AI to improve their learning.

Simple extensions

If you encounter a problem submitting your work on time, you may be able to apply for an extension of five calendar days through a simple extension.  The application process will be different depending on the type of assessment and extensions cannot be granted for some assessment types like exams.

Special consideration

If exceptional circumstances mean you can’t complete an assessment, you need consideration for a longer period of time, or if you have essential commitments which impact your performance in an assessment, you may be eligible for special consideration or special arrangements.

Special consideration applications will not be affected by a simple extension application.

Using AI responsibly

Co-created with students, AI in Education includes lots of helpful examples of how students use generative AI tools to support their learning. It explains how generative AI works, the different tools available and how to use them responsibly and productively.

WK Topic Learning activity Learning outcomes
Week 01 Introduction Lecture (1 hr)  
1. Market review; 2. Scoping calculations Tutorial (3 hr)  
Week 02 1. Technology review; 2. Block diagram Lecture (1 hr)  
1. Pre feasibility study; 2. Technology review; 3. Block diagram Tutorial (3 hr)  
Week 03 PFD and mass balance Lecture and tutorial (4 hr)  
Week 04 PFD and mass balance Lecture and tutorial (4 hr)  
Week 05 Rapid ranking and Environmental Impact Statements Lecture and tutorial (4 hr)  
Week 06 PID and control Lecture and tutorial (4 hr)  
Week 07 HAZOP refresher Lecture (1 hr)  
Week 08 HAZOP Lecture and tutorial (4 hr)  
Week 09 Detailed design and costing Lecture and tutorial (4 hr)  
Week 10 Feasibility Lecture and tutorial (4 hr)  
Week 11 Report Lecture and tutorial (4 hr)  
Week 12 Report Lecture and tutorial (4 hr)  

Attendance and class requirements

Attendance is required at all lectures and group work sessions. This can be either physically or via remote tools.

Experience has shown that poor attendance results in poor performance in the group project and design review.

Study commitment

Typically, there is a minimum expectation of 1.5-2 hours of student effort per week per credit point for units of study offered over a full semester. For a 6 credit point unit, this equates to roughly 120-150 hours of student effort in total.

Required readings

All readings for this unit can be accessed through the Library eReserve, available on Canvas.

  • Peters, Timmerhaus and West, Plant Design and Economics for Chemical Engineers (Fifth). McGraw Hill, 2003. 0-07-239266-5.

Learning outcomes are what students know, understand and are able to do on completion of a unit of study. They are aligned with the University's graduate qualities and are assessed as part of the curriculum.

At the completion of this unit, you should be able to:

  • LO1. work as a team to produce a process design
  • LO2. recognise the fact that technical considerations are only one component in an overall successful design project
  • LO3. illustrate the links between process selection, commercial feasibility and environmental impact
  • LO4. clearly present the results from both individual and group work in oral/written formats
  • LO5. identify the technical and financial trade-offs that exist in complex flowsheets
  • LO6. apply theory of hazard assessment and hazard operability studies
  • LO7. develop a wide range of alternative conceptual designs for a given product specification and market analysis
  • LO8. evaluate process alternatives at the conceptual level with a view to creating a ‘short-list’ worthy of more detailed technical investigation
  • LO9. use process flowsheeting software to compare alternative designs, including the potential benefits of both process modification (e.g. by heat integration) and process optimisation and factorial cost estimation.

Graduate qualities

The graduate qualities are the qualities and skills that all University of Sydney graduates must demonstrate on successful completion of an award course. As a future Sydney graduate, the set of qualities have been designed to equip you for the contemporary world.

GQ1 Depth of disciplinary expertise

Deep disciplinary expertise is the ability to integrate and rigorously apply knowledge, understanding and skills of a recognised discipline defined by scholarly activity, as well as familiarity with evolving practice of the discipline.

GQ2 Critical thinking and problem solving

Critical thinking and problem solving are the questioning of ideas, evidence and assumptions in order to propose and evaluate hypotheses or alternative arguments before formulating a conclusion or a solution to an identified problem.

GQ3 Oral and written communication

Effective communication, in both oral and written form, is the clear exchange of meaning in a manner that is appropriate to audience and context.

GQ4 Information and digital literacy

Information and digital literacy is the ability to locate, interpret, evaluate, manage, adapt, integrate, create and convey information using appropriate resources, tools and strategies.

GQ5 Inventiveness

Generating novel ideas and solutions.

GQ6 Cultural competence

Cultural Competence is the ability to actively, ethically, respectfully, and successfully engage across and between cultures. In the Australian context, this includes and celebrates Aboriginal and Torres Strait Islander cultures, knowledge systems, and a mature understanding of contemporary issues.

GQ7 Interdisciplinary effectiveness

Interdisciplinary effectiveness is the integration and synthesis of multiple viewpoints and practices, working effectively across disciplinary boundaries.

GQ8 Integrated professional, ethical, and personal identity

An integrated professional, ethical and personal identity is understanding the interaction between one’s personal and professional selves in an ethical context.

GQ9 Influence

Engaging others in a process, idea or vision.

Outcome map

Learning outcomes Graduate qualities
GQ1 GQ2 GQ3 GQ4 GQ5 GQ6 GQ7 GQ8 GQ9

This section outlines changes made to this unit following staff and student reviews.

Minor changes have been made in light of feedback from previous years. EIS has been moved from Design B to level workloads.

Site visit guidelines

There may be a site visit for this unit, if so we will inform you of the PPE requirements well in advance.

Work, health and safety

There may be a site visit for this unit, if so we will inform you of the PPE requirements well in advance.

Disclaimer

The University reserves the right to amend units of study or no longer offer certain units, including where there are low enrolment numbers.

To help you understand common terms that we use at the University, we offer an online glossary.