Key global drivers impacting our environment and urban living include population growth expected to reach 9 billion by 2050, and increasing affluence, which will see the tripling of global consumption of natural resources. Current patterns of production and consumption described as the linear "take-make-dispose" model are unsustainable, in contrast to the circular economy model described as the "reduce-reuse-recycle" which seeks to preserve upstream natural resources (energy and materials), optimise manufacturing processes that reduce generation of irreversible waste. The Circular Economy sets the foundations for engineering resource efficient, sustainable technologies and driving sustainable manufacturing, required to bring deep cuts in environmental damage driven by a growing and more affluent global population. Circular economy is an emerging paradigm in environmental management being adopted by organisation around the world to facilitate more efficient resource utilisation, while creating new economic opportunity in a digital age.
Unit details and rules
Academic unit | Chemical and Biomolecular Engineering |
---|---|
Credit points | 6 |
Prerequisites
?
|
None |
Corequisites
?
|
None |
Prohibitions
?
|
SUCH3009 |
Assumed knowledge
?
|
None |
Available to study abroad and exchange students | Yes |
Teaching staff
Coordinator | Ali Abbas, ali.abbas@sydney.edu.au |
---|---|
Lecturer(s) | Gobinath Rajarathnam, gobinath.rajarathnam@sydney.edu.au |
Ali Abbas, ali.abbas@sydney.edu.au |