The capstone project requires the student to plan and execute a substantial research-based project, using their technical and communication skills to design, evaluate, implement, analyse and theorise about developments that contribute to professional practice thus demonstrating the achievement of AQF Level 9. The ability to plan, systematically conduct and report on a major research project is an important skill for professional engineers. This unit of study builds on technical competencies introduced in previous years, as well as making use of the report writing and communications skills the students have developed. The research activity is spread over two units (Minimum 12 A and B) run over two semesters. In this unit of study, students are required to plan and begin work on a major research project, which is very often some aspect of a staff member's research interests. Some of the projects will be experimental in nature, while others may involve computer-based simulation, design or literature surveys. In this unit, students will learn how to examine published and experimental data, set objectives, organize a program of work and devise an experimental or developmental program. The progress at the end of Project A will be evaluated based on a seminar presentation and a progress report. The skills acquired will be invaluable to students undertaking engineering work. Students are expected to take the initiative when pursuing their research projects. The supervisor will be available for discussion- typically 1 hour per week. A thesis at this level will represent a contribution to professional practice or research, however the timeframe available for the thesis also needs to considered when developing project scopes. Indeed, a key aim of the thesis is to specify a research topic that arouses sufficient intellectual curiosity, and presents an appropriate range and diversity of technical and conceptual challenges, while remaining manageable and allowing achievable outcomes within the time and resources available. It is important that the topic be of sufficient scope and complexity to allow a student to learn their craft and demonstrate their research skills. Equally imperative is that the task not be so demanding as to elude completion. Finally the ability to plan such a project to achieve results within constraints and the identification of promising areas and approaches for future research is a key assessment criterion.
Unit details and rules
Academic unit | Chemical and Biomolecular Engineering |
---|---|
Credit points | 6 |
Prerequisites
?
|
None |
Corequisites
?
|
CHNG5020 |
Prohibitions
?
|
CHNG5022 OR CHNG5222 OR CHNG5223 OR CHNG5205 |
Assumed knowledge
?
|
Enrolment in this unit of study assumes that Capstone Project A has been successfully completed |
Available to study abroad and exchange students | No |
Teaching staff
Coordinator | Marcello Solomon, marcello.solomon@sydney.edu.au |
---|---|
Lecturer(s) | Marcello Solomon, marcello.solomon@sydney.edu.au |
Tutor(s) | Luis Gustavo Bezerra de Campos, luisgustavo.bezerradecampos@sydney.edu.au |
Katelyn Clutterbuck, katelyn.clutterbuck@sydney.edu.au |