Useful links
CHNG2803/9203 is a practically and theoretically-based course, where students will be introduced to types of problems that the modern chemical engineer may be asked to solve. The material is contemporary in nature, and the projects link with the key concepts taught in CHNG2801/9201 and CHNG2802/9202 and across the curriculum. The objectives in this unit are to provide an interesting, enjoyable, and challenging introduction to fundamental aspects of chemical engineering, particularly conservation and transport processes involving fluids and energy, as well as to the application of mathematical techniques in typical engineering problems. In this course there is one overall project. The overall goal of the project work throughout this semester is to build a small cooling tower. This cooling tower may be used to cool water from processes that make the water hot, to humidify air that is cold and dry (as in a Sydney winter) or to dehumidify warm wet air (as in a Sydney summer). The overall project will be split into two sub-projects: Fluid mechanics- 4 weeks; Heat and mass transfer- 8 weeks. The project in CHNG9203 addresses transport processes, including the movement of momentum (fluid mechanics), thermal energy (heat transfer) and components with mass. The projects are underpinned by a critical and constructive analysis and best practice in learning and teaching. In addition to the basic knowledge and skills required to pass this unit, the development of an understanding sufficient to enable you to tackle new and unfamiliar problems will be emphasized. You will learn to work in largely unsupervised groups and to be responsible for managing your individual and group performance.
Study level | Postgraduate |
---|---|
Academic unit | Chemical and Biomolecular Engineering |
Credit points | 6 |
Prerequisites:
?
|
None |
---|---|
Corequisites:
?
|
None |
Prohibitions:
?
|
CHNG2803 or CHNG5703 |
Assumed knowledge:
?
|
Ability to understand basic principles of physical chemistry, physics and mechanics. Ability to use mathematics of calculus (including vector calculus) and linear algebra, and carry out computations with MATLAB and MS EXCEL. Ability to read widely outside of the technical literature, and to synthesise arguments based on such literature. Ability to write coherent reports and essays based on qualitative and quantitative information |
At the completion of this unit, you should be able to:
This section lists the session, attendance modes and locations the unit is available in. There is a unit outline for each of the unit availabilities, which gives you information about the unit including assessment details and a schedule of weekly activities.
The outline is published 2 weeks before the first day of teaching. You can look at previous outlines for a guide to the details of a unit.
Session | MoA ? | Location | Outline ? |
---|---|---|---|
Semester 1 2024
|
Normal day | Camperdown/Darlington, Sydney |
View
|
Session | MoA ? | Location | Outline ? |
---|---|---|---|
Semester 1 2025
|
Normal day | Camperdown/Darlington, Sydney |
Outline unavailable
|
Session | MoA ? | Location | Outline ? |
---|---|---|---|
Semester 1 2020
|
Normal day | Camperdown/Darlington, Sydney |
View
|
Semester 1 2021
|
Normal day | Camperdown/Darlington, Sydney |
View
|
Semester 1 2021
|
Normal day | Remote |
View
|
Semester 1 2022
|
Normal day | Camperdown/Darlington, Sydney |
Outline unavailable
|
Semester 1 2022
|
Normal day | Remote |
Outline unavailable
|
Semester 1 2023
|
Normal day | Camperdown/Darlington, Sydney |
View
|
Find your current year census dates
This refers to the Mode of attendance (MoA) for the unit as it appears when you’re selecting your units in Sydney Student. Find more information about modes of attendance on our website.