Skip to main content
Unit outline_

CIVL3612: Fluid Mechanics

Semester 1, 2020 [Normal day] - Camperdown/Darlington, Sydney

This unit of study aims to provide an understanding of the conservation of mass and momentum in differential forms for viscous fluid flows. It provides the foundation for advanced study of turbulence, flow around immersed bodies, open channel flow, pipe flow and pump design.

Unit details and rules

Academic unit Civil Engineering
Credit points 6
Prerequisites
? 
None
Corequisites
? 
None
Prohibitions
? 
None
Assumed knowledge
? 

CIVL2611

Available to study abroad and exchange students

Yes

Teaching staff

Coordinator Kapil Chauhan, kapil.chauhan@sydney.edu.au
Type Description Weight Due Length
Online task Quizzes
Online quiz
40% - 1 or 2 hrs
Outcomes assessed: LO4 LO13 LO12 LO11 LO10 LO9 LO8 LO7 LO6 LO5
Assignment Lab report
Online submission - Excel file
10% - n/a
Outcomes assessed: LO1 LO10 LO8 LO7 LO2
Final exam Final exam
Online quiz + Take home
40% Formal exam period 3 hours
Outcomes assessed: LO4 LO13 LO12 LO11 LO10 LO9 LO8 LO7 LO6 LO5
Assignment Pre-lab quizzes
Online quiz
5% Multiple weeks n/a
Outcomes assessed: LO2 LO6 LO7 LO10 LO11
Assignment Applications assignment
Online submission - PDF/DOC
5% Week 02 n/a
Outcomes assessed: LO3

Assessment summary

All assessments will be online in S1, 2020. Please see UoS Canvas site for details.

Assessment criteria

The University awards common result grades, set out in the Coursework Policy 2014 (Schedule 1).

As a general guide, a high distinction indicates work of an exceptional standard, a distinction a very high standard, a credit a good standard, and a pass an acceptable standard.

Result name

Mark range

Description

High distinction

85 - 100

 

Distinction

75 - 84

 

Credit

65 - 74

 

Pass

50 - 64

 

Fail

0 - 49

When you don’t meet the learning outcomes of the unit to a satisfactory standard.

For more information see guide to grades.

Late submission

In accordance with University policy, these penalties apply when written work is submitted after 11:59pm on the due date:

  • Deduction of 5% of the maximum mark for each calendar day after the due date.
  • After ten calendar days late, a mark of zero will be awarded.

This unit has an exception to the standard University policy or supplementary information has been provided by the unit coordinator. This information is displayed below:

20% penalty per day applies to all late submissions

Academic integrity

The Current Student website provides information on academic integrity and the resources available to all students. The University expects students and staff to act ethically and honestly and will treat all allegations of academic integrity breaches seriously.

We use similarity detection software to detect potential instances of plagiarism or other forms of academic integrity breach. If such matches indicate evidence of plagiarism or other forms of academic integrity breaches, your teacher is required to report your work for further investigation.

Use of generative artificial intelligence (AI) and automated writing tools

You may only use generative AI and automated writing tools in assessment tasks if you are permitted to by your unit coordinator. If you do use these tools, you must acknowledge this in your work, either in a footnote or an acknowledgement section. The assessment instructions or unit outline will give guidance of the types of tools that are permitted and how the tools should be used.

Your final submitted work must be your own, original work. You must acknowledge any use of generative AI tools that have been used in the assessment, and any material that forms part of your submission must be appropriately referenced. For guidance on how to acknowledge the use of AI, please refer to the AI in Education Canvas site.

The unapproved use of these tools or unacknowledged use will be considered a breach of the Academic Integrity Policy and penalties may apply.

Studiosity is permitted unless otherwise indicated by the unit coordinator. The use of this service must be acknowledged in your submission as detailed on the Learning Hub’s Canvas page.

Outside assessment tasks, generative AI tools may be used to support your learning. The AI in Education Canvas site contains a number of productive ways that students are using AI to improve their learning.

Simple extensions

If you encounter a problem submitting your work on time, you may be able to apply for an extension of five calendar days through a simple extension.  The application process will be different depending on the type of assessment and extensions cannot be granted for some assessment types like exams.

Special consideration

If exceptional circumstances mean you can’t complete an assessment, you need consideration for a longer period of time, or if you have essential commitments which impact your performance in an assessment, you may be eligible for special consideration or special arrangements.

Special consideration applications will not be affected by a simple extension application.

Using AI responsibly

Co-created with students, AI in Education includes lots of helpful examples of how students use generative AI tools to support their learning. It explains how generative AI works, the different tools available and how to use them responsibly and productively.

WK Topic Learning activity Learning outcomes
Week 01 1. Introduction; 2. Acceleration 1 Lecture and tutorial (5 hr) LO3 LO4
Week 02 1. Conservation of mass 1; 2. Acceleration 2 Lecture and tutorial (5 hr) LO4
Week 03 1. Potential flow 1; 2. Conservation of mass 2 Lecture and tutorial (5 hr) LO4
Week 04 1. Potential flow 2; 2. Navier-Stokes equations 1 Lecture and tutorial (5 hr) LO5 LO6
Week 05 1. Navier-Stokes equations 2; 2. Dimensionless Navier-Stokes 1 Lecture and tutorial (5 hr) LO5 LO6
Week 06 1. Viscous pipe flow 1; 2. Dimensionless Navier-Stokes 2 Lecture and tutorial (5 hr) LO6 LO7 LO8
Week 07 1. Viscous pipe flow 2; 2. Viscous pipe flow 3 Lecture and tutorial (5 hr) LO7 LO8
Week 08 1. Viscous pipe flow 4; 2. Flow over immersed bodies 1 Lecture and tutorial (5 hr) LO9
Week 09 1. Flow over immersed bodies 2; 2. Flow over immersed bodies 3 Lecture and tutorial (5 hr) LO9
Week 10 1. Open channel flows 1; 2. Flow over immersed bodies 4 Lecture and tutorial (5 hr) LO9 LO10
Week 11 1. Open channel flows 2; 2. Open channel flows 3 Lecture and tutorial (5 hr) LO10 LO11
Week 12 1. Pumps 1; 2. Pumps 2 Lecture and tutorial (5 hr) LO12
Week 13 1. Pumps 3; 2. Review Lecture and tutorial (5 hr) LO12

Attendance and class requirements

  • Assessment: In order to achieve a pass in this unit of study, students must receive a total combined mark of at least 50%, satisfactory final semester examination performance, and submit both lab reports. Students who do not meet all the criteria will not receive a pass mark for the unit of study, and will not receive a mark greater than 50%, regardless of their performance in the other components of the unit of study. Satisfactory performance is defined as an exam mark of more than 50%. 
  • Attendance: Late submission of lab reports will be penalized at 20% per day of the lab’s marks. 

Study commitment

Typically, there is a minimum expectation of 1.5-2 hours of student effort per week per credit point for units of study offered over a full semester. For a 6 credit point unit, this equates to roughly 120-150 hours of student effort in total.

Learning outcomes are what students know, understand and are able to do on completion of a unit of study. They are aligned with the University's graduate qualities and are assessed as part of the curriculum.

At the completion of this unit, you should be able to:

  • LO1. write a laboratory report in technical english
  • LO2. understand basic experimental techniques
  • LO3. understanding applications of fluid mechanics
  • LO4. apply the concept of acceleration in a Lagrangian frame of reference in different flow configurations
  • LO5. analyse ideal flows using the potential flow theory
  • LO6. analyse viscous flows using the Navier-Stokes equations
  • LO7. apply appropriate equations and principles to analyse a variety of pipe flow situations
  • LO8. discuss the main properties of laminar and turbulent flow and appreciate their difference
  • LO9. explain the fundamental characteristics of a boundary layer, including laminar, transitional, and turbulent regimes
  • LO10. apply appropriate equation to analyse open-channel flow with uniform depth and predict the water surface profile for any situation
  • LO11. calculate key properties of a hydraulic jump
  • LO12. explain how and why a turbomachine works
  • LO13. select an appropriate class of turbo-machine for a particular application

Graduate qualities

The graduate qualities are the qualities and skills that all University of Sydney graduates must demonstrate on successful completion of an award course. As a future Sydney graduate, the set of qualities have been designed to equip you for the contemporary world.

GQ1 Depth of disciplinary expertise

Deep disciplinary expertise is the ability to integrate and rigorously apply knowledge, understanding and skills of a recognised discipline defined by scholarly activity, as well as familiarity with evolving practice of the discipline.

GQ2 Critical thinking and problem solving

Critical thinking and problem solving are the questioning of ideas, evidence and assumptions in order to propose and evaluate hypotheses or alternative arguments before formulating a conclusion or a solution to an identified problem.

GQ3 Oral and written communication

Effective communication, in both oral and written form, is the clear exchange of meaning in a manner that is appropriate to audience and context.

GQ4 Information and digital literacy

Information and digital literacy is the ability to locate, interpret, evaluate, manage, adapt, integrate, create and convey information using appropriate resources, tools and strategies.

GQ5 Inventiveness

Generating novel ideas and solutions.

GQ6 Cultural competence

Cultural Competence is the ability to actively, ethically, respectfully, and successfully engage across and between cultures. In the Australian context, this includes and celebrates Aboriginal and Torres Strait Islander cultures, knowledge systems, and a mature understanding of contemporary issues.

GQ7 Interdisciplinary effectiveness

Interdisciplinary effectiveness is the integration and synthesis of multiple viewpoints and practices, working effectively across disciplinary boundaries.

GQ8 Integrated professional, ethical, and personal identity

An integrated professional, ethical and personal identity is understanding the interaction between one’s personal and professional selves in an ethical context.

GQ9 Influence

Engaging others in a process, idea or vision.

Outcome map

Learning outcomes Graduate qualities
GQ1 GQ2 GQ3 GQ4 GQ5 GQ6 GQ7 GQ8 GQ9

This section outlines changes made to this unit following staff and student reviews.

More tutors have been hired to improve the student/staff ratio in tutorial classes, and provide more opportunity for individual support in class.

Disclaimer

The University reserves the right to amend units of study or no longer offer certain units, including where there are low enrolment numbers.

To help you understand common terms that we use at the University, we offer an online glossary.