This unit introduces computational linguistics and the statistical techniques and algorithms used to automatically process natural languages (such as English or Chinese). It will review the core statistics and information theory, and the basic linguistics, required to understand statistical natural language processing (NLP). Statistical NLP is used in a wide range of applications, including information retrieval and extraction; question answering; machine translation; and classifying and clustering of documents. This unit will explore the key challenges of natural language to computational modelling, and the state of the art approaches to the key NLP sub-tasks, including tokenisation, morphological analysis, word sense representation, part-of-speech tagging, named entity recognition and other information extraction, text categorisation, phrase structure parsing and dependency parsing. You will implement many of these sub-tasks in labs and assignments. The unit will also investigate the annotation process that is central to creating training data for statistical NLP systems. You will annotate data as part of completing a real-world NLP task.
Unit details and rules
Academic unit | Computer Science |
---|---|
Credit points | 6 |
Prerequisites
?
|
DATA3888 or COMP3888 or COMP3988 or CSEC3888 or ISYS3888 or SOFT3888 or ENGG3112 or SCPU3001 |
Corequisites
?
|
Enrolment in a thesis unit. INFO4001 or INFO4911 or INFO4991 or INFO4992 or AMME4111 or BMET4111 or CHNG4811 or CIVL4022 or ELEC4712 or COMP4103 or SOFT4103 or DATA4103 or ISYS4103 |
Prohibitions
?
|
COMP5046 |
Assumed knowledge
?
|
A major in a computer science area. Knowledge of an OO programming language as covered in INFO1113 |
Available to study abroad and exchange students | Yes |
Teaching staff
Coordinator | Jonathan Kummerfeld, jonathan.kummerfeld@sydney.edu.au |
---|