Skip to main content
Unit of study_

CSYS5030: Information Theory and Self-Organisation

2025 unit information

The dynamics of complex systems are often described in terms of how they process information and self-organise; for example regarding how genes store and utilise information, how information is transferred between neurons in undertaking cognitive tasks, and how swarms process information in order to collectively change direction in response to predators. The language of information also underpins many of the central concepts of complex adaptive systems, including order and randomness, self-organisation and emergence. Shannon information theory, which was originally founded to solve problems of data compression and communication, has found contemporary application in how to formalise such notions of information in the world around us and how these notions can be used to understand and guide the dynamics of complex systems. This unit of study introduces information theory in this context of analysis of complex systems, foregrounding empirical analysis using modern software toolkits, and applications in time-series analysis, nonlinear dynamical systems and data science. Students will be introduced to the fundamental measures of entropy and mutual information, as well as dynamical measures for time series analysis and information flow such as transfer entropy, building to higher-level applications such as feature selection in machine learning and network inference. They will gain experience in empirical analysis of complex systems using comprehensive software toolkits, and learn to construct their own analyses to dissect and design the dynamics of self-organisation in applications such as neural imaging analysis, natural and robotic swarm behaviour, characterisation of risk factors for and diagnosis of diseases, and financial market dynamics.

Unit details and rules

Managing faculty or University school:

Engineering

Study level Postgraduate
Academic unit Computer Science
Credit points 6
Prerequisites:
? 
None
Corequisites:
? 
None
Prohibitions:
? 
None
Assumed knowledge:
? 
Competency in 1st year mathematics, and basic computer programming skills are assumed. Competency in 1st year undergraduate level statistics (for example, covering probabilities, conditional probabilities, Gaussian distribution, correlations, statistical significance/hypothesis testing and p-values). An exposure to linear algebra would be useful but not mandatory

At the completion of this unit, you should be able to:

  • LO1. critically evaluate investigations of self-organisation and relationships in complex systems using information theory, and the insights provided
  • LO2. develop scientific programming skills which can be applied in complex system analysis and design
  • LO3. apply and make informed decisions in selecting and using information-theoretic measures, and software tools to analyse complex systems
  • LO4. create information-theoretic analyses of real-world data sets, in particular in a student’s domain area of expertise
  • LO5. understand basic information-theoretic measures, and advanced measures for time-series, and how to use these to analyse and dissect the nature, structure, function, and evolution of complex systems
  • LO6. understand the design of, and to extend the design of a piece of software using techniques from class, and your own readings.

Unit availability

This section lists the session, attendance modes and locations the unit is available in. There is a unit outline for each of the unit availabilities, which gives you information about the unit including assessment details and a schedule of weekly activities.

The outline is published 2 weeks before the first day of teaching. You can look at previous outlines for a guide to the details of a unit.

Session MoA ?  Location Outline ? 
Semester 2 2024
Normal evening Camperdown/Darlington, Sydney
Session MoA ?  Location Outline ? 
Semester 2 2025
Normal evening Camperdown/Darlington, Sydney
Outline unavailable
Session MoA ?  Location Outline ? 
Semester 2 2020
Normal evening Camperdown/Darlington, Sydney
Semester 2 2021
Normal evening Remote
Semester 2 2022
Normal evening Camperdown/Darlington, Sydney
Semester 2 2022
Normal evening Remote
Semester 2 2023
Normal evening Camperdown/Darlington, Sydney

Find your current year census dates

Modes of attendance (MoA)

This refers to the Mode of attendance (MoA) for the unit as it appears when you’re selecting your units in Sydney Student. Find more information about modes of attendance on our website.