Skip to main content
Unit of study_

ELEC3206: Electrical Energy Conversion Systems

2025 unit information

This unit of study aims to give students a good understanding of electrical energy conversion techniques and equipment. Students who successfully complete this unit will: Have a broad view of electrical energy conversion systems including transformers, DC machines, induction machines and synchronous machines; Be able to analyse and solve problems in transformers and electric machines; Have gained confidence in their ability to undertake more advanced study in the power area. The following specific topics are covered: magnetic circuits, inductance, sinusoidal excitation, hysteresis and eddy current loss, permanent magnets, electromechanical energy conversion, singly-excited and doubly-excited systems, transformers, single-phase, equivalent circuit parameters, three-phase transformers, autotransformers, DC machines, separate excitation, shunt excitation, series excitation, and compound excitation, efficiency, armature reaction, induction machines, revolving field, equivalent circuit, squirrel cage machines, measurements of the parameters, DC resistance test, no-load test, blocked-rotor test, synchronous machines, field relationships, power-angle relationships, salient pole machines.

Unit details and rules

Managing faculty or University school:

Engineering

Study level Undergraduate
Academic unit School of Electrical and Computer Engineering
Credit points 6
Prerequisites:
? 
None
Corequisites:
? 
None
Prohibitions:
? 
None
Assumed knowledge:
? 
Following concepts are assumed knowledge for this unit of study: familiarity with circuit theory, electronic devices, ac power, capacitors and inductors, and electric circuits such as three-phase circuits and circuits with switches, the use of basic laboratory equipment such as oscilloscope and power supply

At the completion of this unit, you should be able to:

  • LO1. instigate inquiry for knowledge development, drawing on varied information sources and media formats and synthesise the information most pertinent to the design of AC or DC machines for particular application
  • LO2. work in a team and promote creative team interaction to encourage contribution from all members so as to deliver specific engineering projects and assignments
  • LO3. analyse, design and control an AC or DC machine for a particular application
  • LO4. perform calculations on machines using power quality concept and electrical circuit theories to the extent of the information presented
  • LO5. explain the theory of machinery.

Unit availability

This section lists the session, attendance modes and locations the unit is available in. There is a unit outline for each of the unit availabilities, which gives you information about the unit including assessment details and a schedule of weekly activities.

The outline is published 2 weeks before the first day of teaching. You can look at previous outlines for a guide to the details of a unit.

Session MoA ?  Location Outline ? 
Semester 2 2024
Normal day Camperdown/Darlington, Sydney
Session MoA ?  Location Outline ? 
Semester 2 2025
Normal day Camperdown/Darlington, Sydney
Outline unavailable
Session MoA ?  Location Outline ? 
Semester 2 2020
Normal day Camperdown/Darlington, Sydney
Semester 2 2021
Normal day Camperdown/Darlington, Sydney
Semester 2 2021
Normal day Remote
Semester 2 2022
Normal day Camperdown/Darlington, Sydney
Semester 2 2022
Normal day Remote
Semester 2 2023
Normal day Camperdown/Darlington, Sydney

Find your current year census dates

Modes of attendance (MoA)

This refers to the Mode of attendance (MoA) for the unit as it appears when you’re selecting your units in Sydney Student. Find more information about modes of attendance on our website.