This unit builds on introductory 1st year statistics units and is targeted towards students in the agricultural, life and environmental sciences. It consists of two parts and presents, in an applied manner, the statistical methods that students need to know for further study and their future careers. In the first part the focus is on designed studies including both surveys and formal experimental designs. Students will learn how to analyse and interpret datasets collected from designs from more than 2 treatment levels, multiple factors and different blocking designs. In the second part the focus is on finding patterns in data. In this part the students will learn to model relationships between response and predictor variables using regression, and find patterns in datasets with many variables using principal components analysis and clustering. This part provides the foundation for the analysis of big data. In the practicals the emphasis is on applying theory to analysing real datasets using the statistical software package R. A key feature of the unit is using R to develop coding skills that have become essential in science for processing and analysing datasets of ever-increasing size.
Unit details and rules
Academic unit | Life and Environmental Sciences Academic Operations |
---|---|
Credit points | 6 |
Prerequisites
?
|
[6cp from (ENVX1001 or ENVX1002 or BIOM1003 or MATH1011 or MATH1015 or DATA1001 or DATA1901)] OR [3cp from (MATH1XX1 or MATH1906 or MATH1XX3 or MATH1907) and an additional 3cp from (MATH1XX5)] |
Corequisites
?
|
None |
Prohibitions
?
|
None |
Assumed knowledge
?
|
None |
Available to study abroad and exchange students | Yes |
Teaching staff
Coordinator | Aaron Greenville, aaron.greenville@sydney.edu.au |
---|---|
Lecturer(s) | Floris Van Ogtrop, floris.vanogtrop@sydney.edu.au |
Mathew Crowther, mathew.crowther@sydney.edu.au | |
Liana Pozza, liana.pozza@sydney.edu.au | |
Januar Harianto, januar.harianto@sydney.edu.au | |
Aaron Greenville, aaron.greenville@sydney.edu.au |