Skip to main content
Unit outline_

LIFE4101: Advanced Life Science

Semester 1, 2021 [Normal day] - Camperdown/Darlington, Sydney

Living organisms are impacted by processes that occur across a very wide range of scales. These range from rapid processes at the molecular and cellular scale to multi-year processes at environmental and evolutionary scales. One of the great challenges for modern systems biology is integrating measurements across these scales to understand gene x environment interactions. This unit will develop your skills in this area through critical analysis of a series of recent research papers on a themed topic in small group discussions. For each paper we will explore principles behind the key methods and the methods' practicality. We will look at how those methods were incorporated into an experimental design to address a biological question. We will critically assess the support for conclusions in their paper and their scientific significance. By doing this unit you will develop skills in reading and interpreting primary scientific literature and an advanced understanding of modern topic in systems biology. You will gain a high level of understanding of the theory of key biochemical and statistical methods for analysis of genes, proteins, and cells in biological systems. You will gain the confidence to apply these insights to planning, conducting and reporting your own research findings.

Unit details and rules

Academic unit Life and Environmental Sciences Academic Operations
Credit points 6
Prerequisites
? 
A WAM of 65 or greater. 144 credit points of units of study, including a minimum of 12 credit points from the following (AMED3XXX or ANAT3XXX or ANSC3105 or BCHM3XXX or BCMB3XXX or BIOL3XXX or CPAT3XXX or ENVX3XXX or FOOD3XXX or GEGE3XXX or HSTO3XXX or IMMU3XXX or INFD3XXX or MEDS3XXX or MICR3XXX or NEUR3XXX or NUTM3XXX or PCOL3XXX or PHSI3XXX or QBIO3XXX or SCPU3001 or STAT3XXX or VIRO3XXX).
Corequisites
? 
None
Prohibitions
? 
None
Assumed knowledge
? 

This unit is advanced coursework related to understanding cellular and molecular processes in biology. It assumes background knowledge of cellular and molecular biological aspects of the life sciences consistent with a degree major in Biochemistry, Biochemistry and Molecular Biology, Cell and Developmental Biology, Cell Pathology, Genetics and Genomics, Immunobiology, Infectious Diseases, Medical Science, Microbiology, Molecular Biology and Genetics, Nutrition and Metabolism, Nutrition Science, or Quantitative Life Sciences.

Available to study abroad and exchange students

No

Teaching staff

Coordinator Andrew Holmes, andrew.holmes@sydney.edu.au
Type Description Weight Due Length
Final exam (Record+) Type B final exam Written exam, open book
Critical assessment of research paper.
60% Formal exam period 2 hours
Outcomes assessed: LO1 LO2 LO3 LO4 LO5 LO7
Assignment group assignment Research paper presentation & discussion facilitation
Oral presentation and group discussion management
15% Multiple weeks 2 hours
Outcomes assessed: LO6 LO7
Assignment group assignment Contribution to research discussion
Participation in group discussion
25% Multiple weeks 5 x 2 hours
Outcomes assessed: LO5 LO6 LO7
group assignment = group assignment ?
Type B final exam = Type B final exam ?

Assessment summary

Exam: All questions are short answer or brief essay.

Detailed information for each assessment can be found on Canvas.

Assessment criteria

The University awards common result grades, set out in the Coursework Policy 2014 (Schedule 1).

As a general guide, a high distinction indicates work of an exceptional standard, a distinction a very high standard, a credit a good standard, and a pass an acceptable standard.

Result name

Mark range

Description

High distinction

85 - 100

At HD level, a student demonstrates a flair for the subject as well as a detailed and comprehensive understanding of the unit material. A ‘High Distinction’ reflects exceptional achievement and is awarded to a student who demonstrates the ability to apply their subject knowledge and understanding to produce original solutions for novel or highly complex problems and/or comprehensive critical discussions of theoretical concepts.

Distinction

75 - 84

At DI level, a student demonstrates an aptitude for the subject and a well-developed understanding of the unit material. A ‘Distinction’ reflects excellent achievement and is awarded to a student who demonstrates an ability to apply their subject knowledge and understanding of the subject to produce good solutions for challenging problems and/or a reasonably well-developed critical analysis of theoretical concepts.

Credit

65 - 74

At CR level, a student demonstrates a good command and knowledge of the unit material. A ‘Credit’ reflects solid achievement and is awarded to a student who has a broad general understanding of the unit material and can solve routine problems and/or identify and superficially discuss theoretical concepts.

Pass

50 - 64

At PS level, a student demonstrates proficiency in the unit material. A ‘Pass’ reflects satisfactory achievement and is awarded to a student who has threshold knowledge.

Fail

0 - 49

When you don’t meet the learning outcomes of the unit to a satisfactory standard.

 

For more information see guide to grades.

Late submission

In accordance with University policy, these penalties apply when written work is submitted after 11:59pm on the due date:

  • Deduction of 5% of the maximum mark for each calendar day after the due date.
  • After ten calendar days late, a mark of zero will be awarded.

Academic integrity

The Current Student website provides information on academic integrity and the resources available to all students. The University expects students and staff to act ethically and honestly and will treat all allegations of academic integrity breaches seriously.

We use similarity detection software to detect potential instances of plagiarism or other forms of academic integrity breach. If such matches indicate evidence of plagiarism or other forms of academic integrity breaches, your teacher is required to report your work for further investigation.

Use of generative artificial intelligence (AI) and automated writing tools

You may only use generative AI and automated writing tools in assessment tasks if you are permitted to by your unit coordinator. If you do use these tools, you must acknowledge this in your work, either in a footnote or an acknowledgement section. The assessment instructions or unit outline will give guidance of the types of tools that are permitted and how the tools should be used.

Your final submitted work must be your own, original work. You must acknowledge any use of generative AI tools that have been used in the assessment, and any material that forms part of your submission must be appropriately referenced. For guidance on how to acknowledge the use of AI, please refer to the AI in Education Canvas site.

The unapproved use of these tools or unacknowledged use will be considered a breach of the Academic Integrity Policy and penalties may apply.

Studiosity is permitted unless otherwise indicated by the unit coordinator. The use of this service must be acknowledged in your submission as detailed on the Learning Hub’s Canvas page.

Outside assessment tasks, generative AI tools may be used to support your learning. The AI in Education Canvas site contains a number of productive ways that students are using AI to improve their learning.

Simple extensions

If you encounter a problem submitting your work on time, you may be able to apply for an extension of five calendar days through a simple extension.  The application process will be different depending on the type of assessment and extensions cannot be granted for some assessment types like exams.

Special consideration

If exceptional circumstances mean you can’t complete an assessment, you need consideration for a longer period of time, or if you have essential commitments which impact your performance in an assessment, you may be eligible for special consideration or special arrangements.

Special consideration applications will not be affected by a simple extension application.

Using AI responsibly

Co-created with students, AI in Education includes lots of helpful examples of how students use generative AI tools to support their learning. It explains how generative AI works, the different tools available and how to use them responsibly and productively.

WK Topic Learning activity Learning outcomes
Multiple weeks Journal article: critical review of data and interpretation Workshop (12 hr) LO1 LO2 LO3 LO4 LO5 LO6 LO7

Attendance and class requirements

Due to the exceptional circumstances caused by the COVID-19 pandemic, attendance requirements for this unit of study have been amended. Where online tutorials/workshops/virtual laboratories have been scheduled, students should make every effort to attend and participate at the scheduled time. Penalties will not be applied if technical issues, etc. prevent attendance at a specific online class. In that case, students should discuss the problem with the coordinator, and attend another session, if available.

Study commitment

Typically, there is a minimum expectation of 1.5-2 hours of student effort per week per credit point for units of study offered over a full semester. For a 6 credit point unit, this equates to roughly 120-150 hours of student effort in total.

Learning outcomes are what students know, understand and are able to do on completion of a unit of study. They are aligned with the University's graduate qualities and are assessed as part of the curriculum.

At the completion of this unit, you should be able to:

  • LO1. Demonstrate an understanding of key techniques in characterisation of proteins.
  • LO2. Demonstrate an understanding of key techniques in determining gene functions.
  • LO3. Demonstrate an understanding of key techniques for identification and quantitation of distinct cell types.
  • LO4. Apply key techniques to design experiments in cell and molecular biology.
  • LO5. Critique the reliability and significance of datasets presented in scientific papers.
  • LO6. Facilitate the effective exchange of information, opinions and ideas in small groups.
  • LO7. Distill large data sets to effectively communicate scientific information.

Graduate qualities

The graduate qualities are the qualities and skills that all University of Sydney graduates must demonstrate on successful completion of an award course. As a future Sydney graduate, the set of qualities have been designed to equip you for the contemporary world.

GQ1 Depth of disciplinary expertise

Deep disciplinary expertise is the ability to integrate and rigorously apply knowledge, understanding and skills of a recognised discipline defined by scholarly activity, as well as familiarity with evolving practice of the discipline.

GQ2 Critical thinking and problem solving

Critical thinking and problem solving are the questioning of ideas, evidence and assumptions in order to propose and evaluate hypotheses or alternative arguments before formulating a conclusion or a solution to an identified problem.

GQ3 Oral and written communication

Effective communication, in both oral and written form, is the clear exchange of meaning in a manner that is appropriate to audience and context.

GQ4 Information and digital literacy

Information and digital literacy is the ability to locate, interpret, evaluate, manage, adapt, integrate, create and convey information using appropriate resources, tools and strategies.

GQ5 Inventiveness

Generating novel ideas and solutions.

GQ6 Cultural competence

Cultural Competence is the ability to actively, ethically, respectfully, and successfully engage across and between cultures. In the Australian context, this includes and celebrates Aboriginal and Torres Strait Islander cultures, knowledge systems, and a mature understanding of contemporary issues.

GQ7 Interdisciplinary effectiveness

Interdisciplinary effectiveness is the integration and synthesis of multiple viewpoints and practices, working effectively across disciplinary boundaries.

GQ8 Integrated professional, ethical, and personal identity

An integrated professional, ethical and personal identity is understanding the interaction between one’s personal and professional selves in an ethical context.

GQ9 Influence

Engaging others in a process, idea or vision.

Outcome map

Learning outcomes Graduate qualities
GQ1 GQ2 GQ3 GQ4 GQ5 GQ6 GQ7 GQ8 GQ9

This section outlines changes made to this unit following staff and student reviews.

This is the first time this unit has been offered.

Disclaimer

The University reserves the right to amend units of study or no longer offer certain units, including where there are low enrolment numbers.

To help you understand common terms that we use at the University, we offer an online glossary.