Skip to main content
Unit outline_

MATH1064: Discrete Mathematics for Computation

Semester 2, 2022 [Normal day] - Remote

This unit introduces students to the language and key methods of the area of Discrete Mathematics. The focus is on mathematical concepts in discrete mathematics and their applications, with an emphasis on computation. For instance, to specify a computational problem precisely one needs to give an abstract formulation using mathematical objects such as sets, functions, relations, orders, and sequences. In order to prove that a proposed solution is correct, one needs to apply the principles of mathematical logic, and to use proof techniques such as induction. To reason about the efficiency of an algorithm, one often needs to estimate the growth of functions or count the size of complex mathematical objects. This unit provides the necessary mathematical background for such applications of discrete mathematics. Students will be introduced to mathematical logic and proof techniques; sets, functions, relations, orders, and sequences; counting and discrete probability; asymptotic growth; and basic graph theory.

Unit details and rules

Academic unit Mathematics and Statistics Academic Operations
Credit points 6
Prerequisites
? 
None
Corequisites
? 
None
Prohibitions
? 
MATH1004 or MATH1904
Assumed knowledge
? 

Coordinate geometry, basic integral and differential calculus, polynomial equations and algebraic manipulations, equivalent to HSC Mathematics

Available to study abroad and exchange students

Yes

Teaching staff

Coordinator Jonathan Spreer, jonathan.spreer@sydney.edu.au
Lecturer(s) Jonathan Spreer, jonathan.spreer@sydney.edu.au
Type Description Weight Due Length
Final exam (Record+) Type B final exam Final Exam
multiple choice and written answers
60% Formal exam period 2 hours
Outcomes assessed: LO1 LO2 LO3 LO4
Assignment Assignment 1
written calculations
5% Week 04
Due date: 25 Aug 2022 at 23:59

Closing date: 04 Sep 2022
10 days
Outcomes assessed: LO1 LO2
Online task Quiz 1
multiple choice or written answer
10% Week 06
Due date: 08 Sep 2022 at 23:59

Closing date: 08 Sep 2022
40 minutes
Outcomes assessed: LO1 LO2
Online task Quiz 2
multiple choice or written answer
10% Week 10
Due date: 13 Oct 2022 at 23:59

Closing date: 13 Oct 2022
40 minutes
Outcomes assessed: LO1 LO2
Assignment Assignment 2
written calculations
5% Week 11
Due date: 20 Oct 2022 at 23:59

Closing date: 30 Oct 2022
10 days
Outcomes assessed: LO1 LO2 LO3
Small test Webwork Quiz
online multiple choice quiz
10% Weekly 1 week
Outcomes assessed: LO2 LO3
Type B final exam = Type B final exam ?

Assessment summary

  • Assignments: There are two assignments. Each must be submitted electronically, as one single typeset or scanned PDF file only, via Canvas by the deadline. Note that your assignment will not be marked if it is illegible or if it is submitted sideways or upside down. It is your responsibility to check that your assignment has been submitted correctly and that it is complete (check that you can view each page). Late submisions will receive a penalty. A mark of zero will be awarded for all submissions more than 10 days past the original due date. Further extensions past this time will not be permitted.
  • Quizzes: Two quizzes will be held online through Canvas. Each quiz is 40 minutes and has to be submitted by the closing time of 23:59 on the due date. The quiz can be taken any time during the 24 hour period before the closing time. The better mark principle will be used for the quiz so do not submit an application for Special Consideration or Special Arrangements if you miss a quiz. The better mark principle means that the quiz counts if and only if it is better than or equal to your exam mark. If your quiz mark is less than your exam mark, the exam mark will be used for that portion of your assessment instead.
  • Online WebWork Quizzes: There are 11 weekly online quizzes. Each online quiz consists of a set of randomized questions. The best 10 of your 11 quizzes will count, making each worth 1%. You cannot apply for special consideration for the quizzes. The better mark principle will apply for the total 10% - i.e. if your overall exam mark is higher, then your 10% for the Webwork quizzes will come from your exam. The deadline for completion of each quiz is 23:59 on Friday (starting in week 2). The precise schedule for the quizzes is found on Canvas.
  • Final Exam: There is one examination during the examination period at the end of Semester. Further information about the exam will be made available at a later date on Canvas. If a second replacement exam is required, this exam may be delivered via an alternative assessment method, such as a viva voce (oral exam). The alternative assessment will meet the same learning outcomes as the original exam. The format of the alternative assessment will be determined by the unit coordinator.
  • Simple extensions : No simple extensions are given in first year units in the School of Mathematics and Statistics.

Detailed information for each assessment can be found on Canvas.

Assessment criteria

The University awards common result grades, set out in the Coursework Policy 2014 (Schedule 1).

As a general guide, a high distinction indicates work of an exceptional standard, a distinction a very high standard, a credit a good standard, and a pass an acceptable standard.

Result name

Mark range

Description

High distinction

85 - 100

Representing complete or close to complete mastery of
the material.

Distinction

75 - 84

Representing excellence, but substantially less than
complete mastery.

Credit

65 - 74

Representing a creditable performance that goes
beyond routine knowledge and understanding, but less than excellence.

Pass

50 - 64

Representing at least routine knowledge and understanding over a spectrum of topics and important ideas and concepts in the course.

Fail

0 - 49

When you don’t meet the learning outcomes of the unit to a satisfactory standard.

For more information see guide to grades.

Late submission

In accordance with University policy, these penalties apply when written work is submitted after 11:59pm on the due date:

  • Deduction of 5% of the maximum mark for each calendar day after the due date.
  • After ten calendar days late, a mark of zero will be awarded.

Academic integrity

The Current Student website provides information on academic integrity and the resources available to all students. The University expects students and staff to act ethically and honestly and will treat all allegations of academic integrity breaches seriously.

We use similarity detection software to detect potential instances of plagiarism or other forms of academic integrity breach. If such matches indicate evidence of plagiarism or other forms of academic integrity breaches, your teacher is required to report your work for further investigation.

Use of generative artificial intelligence (AI) and automated writing tools

You may only use generative AI and automated writing tools in assessment tasks if you are permitted to by your unit coordinator. If you do use these tools, you must acknowledge this in your work, either in a footnote or an acknowledgement section. The assessment instructions or unit outline will give guidance of the types of tools that are permitted and how the tools should be used.

Your final submitted work must be your own, original work. You must acknowledge any use of generative AI tools that have been used in the assessment, and any material that forms part of your submission must be appropriately referenced. For guidance on how to acknowledge the use of AI, please refer to the AI in Education Canvas site.

The unapproved use of these tools or unacknowledged use will be considered a breach of the Academic Integrity Policy and penalties may apply.

Studiosity is permitted unless otherwise indicated by the unit coordinator. The use of this service must be acknowledged in your submission as detailed on the Learning Hub’s Canvas page.

Outside assessment tasks, generative AI tools may be used to support your learning. The AI in Education Canvas site contains a number of productive ways that students are using AI to improve their learning.

Simple extensions

If you encounter a problem submitting your work on time, you may be able to apply for an extension of five calendar days through a simple extension.  The application process will be different depending on the type of assessment and extensions cannot be granted for some assessment types like exams.

Special consideration

If exceptional circumstances mean you can’t complete an assessment, you need consideration for a longer period of time, or if you have essential commitments which impact your performance in an assessment, you may be eligible for special consideration or special arrangements.

Special consideration applications will not be affected by a simple extension application.

Using AI responsibly

Co-created with students, AI in Education includes lots of helpful examples of how students use generative AI tools to support their learning. It explains how generative AI works, the different tools available and how to use them responsibly and productively.

WK Topic Learning activity Learning outcomes
Week 01 Logic: prepositional and first order Lecture (3 hr) LO1 LO2 LO3 LO4
Week 02 Inference and proofs Lecture and tutorial (5 hr) LO1 LO2 LO3 LO4
Week 03 Sets, functions, and sequences Lecture and tutorial (5 hr) LO1 LO2 LO3 LO4
Week 04 Number theory Lecture and tutorial (5 hr) LO1 LO2 LO3 LO4
Week 05 Asymptotic growth Lecture and tutorial (5 hr) LO1 LO2 LO3 LO4
Week 06 Induction and recursion Lecture and tutorial (5 hr) LO1 LO2 LO3 LO4
Week 07 Counting (Basics) Lecture and tutorial (5 hr) LO1 LO2 LO3 LO4
Week 08 Counting (Advanced) Lecture and tutorial (5 hr) LO1 LO2 LO3 LO4
Week 09 Discrete probability Lecture and tutorial (5 hr) LO1 LO2 LO3 LO4
Week 10 Relations Lecture and tutorial (5 hr) LO1 LO2 LO3 LO4
Week 11 Graphs Lecture and tutorial (5 hr) LO1 LO2 LO3 LO4
Week 12 Modelling computation: regular languages and DFAs Lecture and tutorial (5 hr) LO1 LO2 LO3 LO4
Week 13 Revision Lecture and tutorial (5 hr) LO1 LO2 LO3 LO4

Attendance and class requirements

  • Attendance: Students are expected to attend a minimum of 80% of timetabled activities for a unit of study, unless granted exemption by the Associate Dean. For some units of study the minimum attendance requirement, as specified in the relevant table of units or the unit of study outline, may be greater than 80%.
  • Tutorial attendance: Tutorials (one per week) start in Week 2. You should attend the tutorial given on your personal timetable. Attendance at tutorials will be recorded. Your attendance will not be recorded unless you attend the tutorial in which you are enrolled.  While there is no penalty if 80% attendance is not met we strongly recommend you attend tutorials regularly to keep up with the material and to engage with the tutorial questions. Since there is no assessment associated with the tutorials do not submit an application for Special Consideration or Special Arrangements for missed tutorials.

Study commitment

Typically, there is a minimum expectation of 1.5-2 hours of student effort per week per credit point for units of study offered over a full semester. For a 6 credit point unit, this equates to roughly 120-150 hours of student effort in total.

Required readings

  • Recommended textbook: Discrete Mathematics and Its Applications (Eigth Edition) by Kenneth H. Rosen

Learning outcomes are what students know, understand and are able to do on completion of a unit of study. They are aligned with the University's graduate qualities and are assessed as part of the curriculum.

At the completion of this unit, you should be able to:

  • LO1. construct logically correct and mathematically sound proofs
  • LO2. apply concepts of logic, set theory, relations, induction, principles of counting, probability, algebraic structures, elementary number theory and asymptotic growth to mathematical and computational problems in more advanced courses
  • LO3. demonstrate an understanding and well-founded knowledge of the mathematics presented in this course and thus be able to apply techniques from this course to solve both familiar and novel problems
  • LO4. understand some applications of mathematics to relevant fields, such as computer programming and logic.

Graduate qualities

The graduate qualities are the qualities and skills that all University of Sydney graduates must demonstrate on successful completion of an award course. As a future Sydney graduate, the set of qualities have been designed to equip you for the contemporary world.

GQ1 Depth of disciplinary expertise

Deep disciplinary expertise is the ability to integrate and rigorously apply knowledge, understanding and skills of a recognised discipline defined by scholarly activity, as well as familiarity with evolving practice of the discipline.

GQ2 Critical thinking and problem solving

Critical thinking and problem solving are the questioning of ideas, evidence and assumptions in order to propose and evaluate hypotheses or alternative arguments before formulating a conclusion or a solution to an identified problem.

GQ3 Oral and written communication

Effective communication, in both oral and written form, is the clear exchange of meaning in a manner that is appropriate to audience and context.

GQ4 Information and digital literacy

Information and digital literacy is the ability to locate, interpret, evaluate, manage, adapt, integrate, create and convey information using appropriate resources, tools and strategies.

GQ5 Inventiveness

Generating novel ideas and solutions.

GQ6 Cultural competence

Cultural Competence is the ability to actively, ethically, respectfully, and successfully engage across and between cultures. In the Australian context, this includes and celebrates Aboriginal and Torres Strait Islander cultures, knowledge systems, and a mature understanding of contemporary issues.

GQ7 Interdisciplinary effectiveness

Interdisciplinary effectiveness is the integration and synthesis of multiple viewpoints and practices, working effectively across disciplinary boundaries.

GQ8 Integrated professional, ethical, and personal identity

An integrated professional, ethical and personal identity is understanding the interaction between one’s personal and professional selves in an ethical context.

GQ9 Influence

Engaging others in a process, idea or vision.

Outcome map

Learning outcomes Graduate qualities
GQ1 GQ2 GQ3 GQ4 GQ5 GQ6 GQ7 GQ8 GQ9

This section outlines changes made to this unit following staff and student reviews.

No changes have been made since this unit was last offered.

Work, health and safety

We are governed by the Work Health and Safety Act 2011, Work Health and Safety Regulation 2011 and Codes of Practice. Penalties for non-compliance have increased. Everyone has a responsibility for health and safety at work. The University’s Work Health and Safety policy explains the responsibilities and expectations of workers and others, and the procedures for managing WHS risks associated with University activities.

Disclaimer

The University reserves the right to amend units of study or no longer offer certain units, including where there are low enrolment numbers.

To help you understand common terms that we use at the University, we offer an online glossary.