Capturing random phenomena is a challenging problem in many disciplines from biology, chemistry and physics through engineering to economics and finance. There is a wide spectrum of problems in these fields, which are described using random processes that evolve with time. Hence it is of crucial importance that applied mathematicians are equipped with tools used to analyse and quantify random phenomena. This unit will introduce an important class of stochastic processes, using the theory of martingales. You will study concepts such as the Ito stochastic integral with respect to a continuous martingale and related stochastic differential equations. Special attention will be given to the classical notion of the Brownian motion, which is the most celebrated and widely used example of a continuous martingale. By completing this unit, you will learn how to rigorously describe and tackle the evolution of random phenomena using continuous time stochastic processes. You will also gain a deep knowledge about stochastic integration, which is an indispensable tool to study problems arising, for example, in Financial Mathematics.
Unit details and rules
Academic unit | Mathematics and Statistics Academic Operations |
---|---|
Credit points | 6 |
Prerequisites
?
|
None |
Corequisites
?
|
None |
Prohibitions
?
|
None |
Assumed knowledge
?
|
Students should have a sound knowledge of probability theory and stochastic processes from, for example, STAT2X11 and STAT3021 or equivalent |
Available to study abroad and exchange students | Yes |
Teaching staff
Coordinator | Anna Aksamit, anna.aksamit@sydney.edu.au |
---|