This unit aims to develop an understanding of: 1) The principles of thermodynamics- energy, entropy and exergy balances- applied to pure substances, mixtures and combustion and the application of these principles to engineering processes, power and refrigeration systems. 2) The principles of heat transfer- conductive, convective, radiative heat transfer- in the context of a variety of physical situations and the application of these principles in order to design and size engineering equipment and analyse engineering processes. Course content includes: 1) Thermodynamics- properties of matter, energy, entropy and exergy balances for closed and steady state flow systems, mixtures, mixing and separation, psychrometry and air-conditioning and combustion- stoichiometry, first and second law analysis of reacting systems. 2) Heat Transfer- conduction, thermal circuits, general conduction equation, conduction through cylindrical bodies and fins, heat exchangers, transient conduction including analytic solutions, forced convection and natural convection, boiling and radiation- spectrum, intensity, surface radiative properties, environmental radiation, solar radiation. At the end of this unit students will be able to: 1) Thermodynamics- apply the principles of thermodynamics and heat transfer to engineering situations; have the ability to tackle and solve a range of problems involving thermodynamic cycles, devices such as compressors and turbines, mixtures, air conditioning, combustion. 2) Heat Transfer- have the ability to tackle and solve a range of heat transfer problems including heat exchangers, cooling by fluids, quenching, insulation and solar radiation.
Unit details and rules
Academic unit | Aerospace, Mechanical and Mechatronic |
---|---|
Credit points | 6 |
Prerequisites
?
|
None |
Corequisites
?
|
None |
Prohibitions
?
|
MECH9260 |
Assumed knowledge
?
|
Fundamentals of thermodynamics are needed to begin this more advanced course |
Available to study abroad and exchange students | No |
Teaching staff
Coordinator | Michael Kirkpatrick, michael.kirkpatrick@sydney.edu.au |
---|---|
Lecturer(s) | Michael Kirkpatrick, michael.kirkpatrick@sydney.edu.au |