Skip to main content
Unit of study_

QBUS6850: Advanced Machine Learning for Business

2025 unit information

Machine Learning is a crucial component of data analytics that automates analytical model building in modern business contexts. In today’s big data era, the ability to analyse vast and diverse data sources empowers organisations to make informed and data-driven decisions across various business domains. This unit covers a wide range of cutting-edge machine learning algorithms that learn from data, unveiling hidden patterns and relationships critical for strategic business decision making. Potential topics include: Neural Networks, Deep Learning, Text Analytics, Natural Language Processing, Advanced Ensemble Methods, Matrix Decomposition, and Recommender Systems. Emphasis is placed on practical applications involving the analysis of business data, allowing students to develop skills in applying machine learning techniques to solve real-world business challenges.

Unit details and rules

Managing faculty or University school:

Business (Business School)

Study level Postgraduate
Academic unit Business Analytics
Credit points 6
Prerequisites:
? 
QBUS6810
Corequisites:
? 
None
Prohibitions:
? 
None
Assumed knowledge:
? 
None

At the completion of this unit, you should be able to:

  • LO1. differentiate different types of learning algorithms and identify the advantages and limitations of each method
  • LO2. build a strong machine learning skill set for business decision making
  • LO3. create machine learning models for studying relationship amongst business variables
  • LO4. work with various data sets and identify problems within real-world constraints
  • LO5. demonstrate proficiency in the use of statistical software, e.g. Python, for machine learning model implementation
  • LO6. work productively and collaboratively in a team
  • LO7. present and write insights and suggestions effectively, professionally and ethically.

Unit availability

This section lists the session, attendance modes and locations the unit is available in. There is a unit outline for each of the unit availabilities, which gives you information about the unit including assessment details and a schedule of weekly activities.

The outline is published 2 weeks before the first day of teaching. You can look at previous outlines for a guide to the details of a unit.

Session MoA ?  Location Outline ? 
Semester 1 2024
Normal day Camperdown/Darlington, Sydney
Semester 2 2024
Normal day Camperdown/Darlington, Sydney
Session MoA ?  Location Outline ? 
Semester 1 2025
Normal day Camperdown/Darlington, Sydney
Outline unavailable
Semester 2 2025
Normal day Camperdown/Darlington, Sydney
Outline unavailable
Session MoA ?  Location Outline ? 
Semester 1 2020
Normal day Camperdown/Darlington, Sydney
Semester 2 2020
Normal day Camperdown/Darlington, Sydney
Semester 1 2021
Normal day Camperdown/Darlington, Sydney
Semester 1 2021
Normal day Remote
Semester 2 2021
Normal day Camperdown/Darlington, Sydney
Semester 2 2021
Normal day Remote
Semester 1 2022
Normal day Camperdown/Darlington, Sydney
Semester 1 2022
Normal day Remote
Semester 2 2022
Normal day Camperdown/Darlington, Sydney
Semester 2 2022
Normal day Remote
Semester 1 2023
Normal day Camperdown/Darlington, Sydney
Semester 1 2023
Normal day Remote
Semester 2 2023
Normal day Camperdown/Darlington, Sydney

Find your current year census dates

Modes of attendance (MoA)

This refers to the Mode of attendance (MoA) for the unit as it appears when you’re selecting your units in Sydney Student. Find more information about modes of attendance on our website.