University of Sydney Handbooks - 2014 Archive

Download full 2014 archive Page archived at: Fri, 04 Apr 2014 13:43:56 +1100

Unit of Study Descriptions

Bachelor of Engineering (Aeronautical) (Space)

Candidates for the degree of Bachelor of Aeronautical (Space) Engineering are required to gain credit for the core units of study set out below. Any additional credit necessary shall be gained by completing additional credit points of elective units of study as recommended by the Faculty, as may be necessary to gain credit for a total of not less than 192 credit points.

Core units of study

First year

AERO1560 Introduction to Aerospace Engineering

Credit points: 6 Session: Semester 1 Classes: 2 hours of lectures, 1 hour of tutorial and 3 hours of workshop practice per week Prohibitions: MECH1560, MTRX1701, ENGG1800 Assessment: Through semester assessment(100%) Campus: Camperdown/Darlington Mode of delivery: Normal (lecture/lab/tutorial) Day
Note: Department permission required for enrolment
This Unit introduces students to the role of professional aerospace engineers, along with the development of fundamental engineering knowledge and skills for aerospace vehicle design, analysis performance and operation. Students will learn through experience, to develop professional skills in research, interpretation, communication, and presentation of information relating to aerospace engineering. Expected learning includes: introduction to lateral thinking concepts; glossary of aerospace vehicle components and terminology; an introduction to the multiple disciplines related to aerospace engineering, such as aerodynamics, aircraft and spacecraft performance, mechanics of flight, aerospace structures, materials and propulsion systems; how the various disciplines are integrated into the design and development of flight platform systems; the operating characteristics of modern flight vehicles, their uses and limitations; modern developments and future trends in aerospace; the limitations of the aerospace environment; teamwork; and resource management. Significantly, professional enhancement is introduced through the development of basic hands-on workshop skills. These practical skills enable students to have a better appreciation of the hardware that they are expected to apply their engineering knowledge to, during their aerospace engineering profession. Experiential learning is facilitated working with machine tools and hand tools in a supervised workshop environment, to develop fundamentals of practical aerospace vehicle component manufacture, construction, servicing and repair.
MATH1001 Differential Calculus

Credit points: 3 Session: Semester 1,Summer Main Classes: Two 1 hour lectures and one 1 hour tutorial per week. Prohibitions: MATH1011, MATH1901, MATH1906, MATH1111, ENVX1001 Assumed knowledge: HSC Mathematics Extension 1 Assessment: One 1.5 hour examination, assignments and quizzes (100%) Campus: Camperdown/Darlington Mode of delivery: Normal (lecture/lab/tutorial) Day
MATH1001 is designed to provide a thorough preparation for further study in mathematics and statistics. It is a core unit of study providing three of the twelve credit points required by the Faculty of Science as well as a Junior level requirement in the Faculty of Engineering.
This unit of study looks at complex numbers, functions of a single variable, limits and continuity, vector functions and functions of two variables. Differential calculus is extended to functions of two variables. Taylor's theorem as a higher order mean value theorem.
Textbooks
As set out in the Junior Mathematics Handbook.
MATH1002 Linear Algebra

Credit points: 3 Session: Semester 1,Summer Main Classes: Two 1 hour lectures and one 1 hour tutorial per week. Prohibitions: MATH1902, MATH1014 Assumed knowledge: HSC Mathematics or MATH1111 Assessment: One 1.5 hour examination, assignments and quizzes (100%) Campus: Camperdown/Darlington Mode of delivery: Normal (lecture/lab/tutorial) Day
MATH1002 is designed to provide a thorough preparation for further study in mathematics and statistics. It is a core unit of study providing three of the twelve credit points required by the Faculty of Science as well as a Junior level requirement in the Faculty of Engineering.
This unit of study introduces vectors and vector algebra, linear algebra including solutions of linear systems, matrices, determinants, eigenvalues and eigenvectors.
Textbooks
As set out in the Junior Mathematics Handbook
ENGG1801 Engineering Computing

Credit points: 6 Session: Semester 1,Summer Late Classes: 2 hour of lectures and 2 hours of computer laboratory sessions per week. Assessment: Through semester assessment (50%), Final Exam (50%) Campus: Camperdown/Darlington Mode of delivery: Normal (lecture/lab/tutorial) Day
The unit will introduce students to fundamental principles of programming. The language used will be Matlab but the principles taught are readily portable to other languages like C and Java. The unit material will be presented in a manner which will help students to draw a connection between programming constructs and real engineering applications. The unit will use engineering inspired case-studies : especially from Civil, Chemical, Aerospace and Mechanical streams, to motivate new material. There will be a major project which uses programming to solve a real world engineering problem. The extensive Matlab library for visualization will also be introduced. Matlab will cover two-thirds of the unit. The remaining one-third will be devoted to the use of Excel in engineering scenarios. Furthermore, cross integration between Matlab and Excel will also be highlighted.
ENGG1803 Professional Engineering 1

Credit points: 6 Session: Semester 1,Semester 2 Classes: 2 hours lectures, 2 hours tutorial/project work per week. Prohibitions: ENGG1061 Assessment: Through semester assessment (100%) Campus: Camperdown/Darlington Mode of delivery: Normal (lecture/lab/tutorial) Day
Professional Engineering 1 is an introductory Unit of Study within the Faculty of Engineering. The semester 1 course is aimed at students from the School of Aerospace, Mechanical and Mechatronic Engineering. It seeks to introduce newly admitted undergraduates to general principles of professional engineering practice, a range of contemporary professional engineering issues, plus outline skills related to academic study within an engineering environment. The subject is structured around a team based design and build project, in which students apply the professional engineering concepts they are learning to an engineering project. Professional engineering topics to be covered include: accessing information, teamwork, creativity, leadership, written and oral communication, project management, problem solving, ethics, liability, occupational health and safety and environmental issues.
Normally taken in Semester 1. Students in combined degrees are exempt.
MATH1003 Integral Calculus and Modelling

Credit points: 3 Session: Semester 2,Summer Main Classes: Two 1 hour lectures and one 1 hour tutorial per week. Prohibitions: MATH1013, MATH1903, MATH1907 Assumed knowledge: HSC Mathematics Extension 1 or MATH1001 or MATH1011 or a credit or higher in MATH1111 Assessment: One 1.5 hour examination, assignments and quizzes (100%) Campus: Camperdown/Darlington Mode of delivery: Normal (lecture/lab/tutorial) Day
MATH1003 is designed to provide a thorough preparation for further study in mathematics and statistics. It is a core unit of study providing three of the twelve credit points required by the Faculty of Science as well as a Junior level requirement in the Faculty of Engineering.This unit of study first develops the idea of the definite integral from Riemann sums, leading to the Fundamental Theorem of Calculus. Various techniques of integration are considered, such as integration by parts.The second part is an introduction to the use of first and second order differential equations to model a variety of scientific phenomena.
Textbooks
As set out in the Junior Mathematics Handbook
MATH1005 Statistics

Credit points: 3 Session: Semester 2,Summer Main Classes: Two 1 hour lectures and one 1 hour tutorial per week. Prohibitions: MATH1015, MATH1905, STAT1021, STAT1022, ECMT1010, ENVX1001, BUSS1020 Assumed knowledge: HSC Mathematics Assessment: One 1.5 hour examination, assignments and quizzes (100%) Campus: Camperdown/Darlington Mode of delivery: Normal (lecture/lab/tutorial) Day
MATH1005 is designed to provide a thorough preparation for further study in mathematics and statistics. It is a core unit of study providing three of the twelve credit points required by the Faculty of Science as well as a Junior level requirement in the Faculty of Engineering.
This unit offers a comprehensive introduction to data analysis, probability, sampling, and inference including t-tests, confidence intervals and chi-squared goodness of fit tests.
Textbooks
As set out in the Junior Mathematics Handbook
ENGG1802 Engineering Mechanics

Credit points: 6 Session: Semester 2,Summer Main,Winter Main Classes: 2hrs of lectures per week, 3hrs of tutorials per week Assessment: Through semester assessment (100%) Campus: Camperdown/Darlington Mode of delivery: Normal (lecture/lab/tutorial) Day
The unit aims to provide students with an understanding of and competence in solving statics and introductory dynamics problems in engineering. Tutorial sessions will help students to improve their group work and problem solving skills, and gain competency in extracting a simplified version of a problem from a complex situation. Emphasis is placed on the ability to work in 3D as well as 2D, including the 2D and 3D visualization of structures and structural components, and the vectorial 2D and 3D representations of spatial points, forces and moments. Introduction to kinematics and dynamics topics includes position, velocity and acceleration of a point; relative motion, force and acceleration, momentum, collisions and energy methods.
AMME1362 Materials 1

Credit points: 6 Session: Semester 2 Classes: 3 hours of lectures, 2 hours of tutorials per week. 3 hours of laboratory work per semester. Prohibitions: CIVL2110, AMME2302, AMME1550 Assessment: Through semester assessment(45%), Final Exam (55%) Campus: Camperdown/Darlington Mode of delivery: Normal (lecture/lab/tutorial) Day
This unit is an introductory course in engineering materials. The unit aims to develop students' understanding of the structures, mechanical properties and manufacture of a range of engineering materials as well as how the mechanical properties relate to microstructure and forming and treatment methods. The unit has no prerequisite subject and is therefore intended for those with little or no previous background in engineering materials. However the unit does require students to take a significant degree of independent responsibility for developing their own background knowledge of materials and their properties. The electrical, magnetic, thermal and optical properties of materials are a critical need-to-know area where students are expected to do most of their learning by independent study.
AERO1400 Intro to Aircraft Construction & Design

Credit points: 6 Session: Semester 2 Classes: 2 hours of lectures and 3 hours of workshop sessions per week Assumed knowledge: Some basic skills with engineering workshop hand tools is desireable Assessment: Through semester assessment (100%) Campus: Camperdown/Darlington Mode of delivery: Normal (lecture/lab/tutorial) Day
Note: Department permission required for enrolment
The study towards BE(Aeronautical) involves learning about the Design, Analysis, Flight, and Operation of Aircraft and other Flight Platforms. This unit facilitates the training towards becoming professional aeronautical engineers through a globally-unique experiential-learning opportunity to provide a strong background familiarity with aircraft hardware. This unit is designed to educate and facilitate the learning of aircraft design, basic aircraft construction techniques, the operation of light aircraft and the registration and regulations relating to light aircraft. In addition to hands-on skills on the construction phase, this unit facilitates learning in motivations for unique aircraft design, aircraft aerodynamics, flight mechanics, structural aspects and other design-related issues. Teamwork plays a very important role in this unit; the ability to work with peers and supervising staff is an invaluable skill sought after by employers of engineers. Throughout the semester, students will be actively participating in the construction of a light aircraft. The aircraft is to be constructed under current Australian Civil Aviation Regulations so that students will gain an insight into all aspects of the process. By being a part of the construction team, students will also experience the organisational requirements necessary to successfully complete a complex engineering project. The aircraft construction workshop component is complemented with lectures, homework, research and assignments to further enhance the learning experience on aircraft. The final outcome will be that students gain a good foundation of: aircraft design and analyses methods; innovative methods of construction; techniques for selecting, sizing and stressing components; regulatory requirements for certification; off-design requirements; construction tolerances; and team-work requirements in undertaking complex engineering projects.
Students in combined degrees are exempt from this unit.

Second year

AMME2301 Mechanics of Solids

Credit points: 6 Session: Semester 2 Classes: 3 hours of lectures and 2 hours of tutorials per week Prerequisites: (MATH1001 or MATH1901 or MATH1906), (MATH1002 or MATH1902), (MATH1003 or MATH1903 or MATH1907), ENGG1802 Assessment: Through semester assessment(35%), Final Exam (65%) Campus: Camperdown/Darlington Mode of delivery: Normal (lecture/lab/tutorial) Day
Equilibrium of deformable structures; basic concept of deformation compatibility; stress and strain in bars, beams and their structures subjected to tension, compression, bending, torsion and combined loading; statically determinate and indeterminate structures; energy methods for bar and beam structures; simple buckling; simple vibration; deformation of simple frames and cell box beams; simple two-dimensional stress and Morh's circle; problem-based applications in aerospace, mechanical and biomedical engineering.
MATH2067 DEs and Vector Calculus for Engineers

Credit points: 6 Session: Semester 1 Classes: Three 1 hour lectures, one 1 hour tutorial and one 1 hour practice class per week. Prerequisites: (MATH1011 or MATH1001 or MATH1901 or MATH1906) and (MATH1014 or MATH1002 or MATH1902) and (MATH1003 or MATH1903 or MATH1907) Prohibitions: MATH2061, MATH2961, MATH2065, MATH2965 Assessment: One 2 hour examination, assignments and quizzes (100%) Campus: Camperdown/Darlington Mode of delivery: Normal (lecture/lab/tutorial) Day
MATH2067 starts by introducing students to solution techniques of ordinary and partial differential equations (ODEs and PDEs) relevant to the engineering disciplines: it provides a basic grounding in these techniques to enable students to build on the concepts in their subsequent engineering classes. The main topics are Fourier series, second order ODEs, including inhomogeneous equations and Laplace transforms, and second order PDEs in rectangular domains (solution by separation of variables).
The unit moves on to topics from vector calculus, including vector-valued functions (parametrised curves and surfaces; vector fields; div, grad and curl; gradient fields and potential functions), line integrals (arc length; work; path-independent integrals and conservative fields; flux across a curve), iterated integrals (double and triple integrals; polar, cylindrical and spherical coordinates; areas, volumes and mass; Green's Theorem), flux integrals (flow through a surface; flux integrals through a surface defined by a function of two variables, though cylinders, spheres and parametrised surfaces), Gauss's Divergence Theorem and Stokes' Theorem.
Students in the combined BE/BSc degree program can take both MATH2061 and MATH2065 as an alternative.
AMME2700 Instrumentation

Credit points: 6 Session: Semester 1 Classes: 2hrs of lectures per week, 2hr of tutorials per week, 6hrs of laboratory per semester. Prerequisites: AERO1560 OR MECH1560 OR MTRX1701 OR ENGG1800 Assumed knowledge: ENGG1801 or INFO1103 Programming Skills, 1st Year maths skills, familiarity with fundamental Aerospace concepts. Assessment: Final Exam (40%), through semester assessment (60%) Campus: Camperdown/Darlington Mode of delivery: Normal (lecture/lab/tutorial) Day
This unit aims to develop in students an understanding of the engineering measurements and instrumentation systems. The students will acquire an ability to make accurate and meaningful measurements. It will cover the general areas of electrical circuits and mechanical/electronic instrumentation for strain, force, pressure, moment, torque, displacement, velocity, acceleration, temperature and so on.
Students in combined degrees are exempt from this unit.
AMME2500 Engineering Dynamics

Credit points: 6 Session: Semester 1 Classes: 3 hours of lectures and 2 hours of tutorials per week. 6 hours of laboratory work per semester. Prerequisites: (MATH1001 or MATH1901 or MATH1906), (MATH1002 or MATH1902), (AMME1550 or PHYS1001 or PHYS1901 ) Assessment: Through semester assessment (40%), Final Exam (60%) Campus: Camperdown/Darlington Mode of delivery: Normal (lecture/lab/tutorial) Day
This unit of study aims to teach: Dynamics of Rigid Bodies: Analysis of Planar mechanisms; Kinematics of rigid bodies; Kinetics of rigid bodies. Students will also develop their skills in: how to model and analyse dynamic systems and the application of theory to real systems through practical/laboratory sessions.
At the end of this unit students will have developed skills in modelling and analysing planar mechanisms and rigid body dynamic systems.
Course content will include planar mechanisms, linkages, mobility; instant centres of rotation, Kennedy's theorem; velocity and acceleration polygons; kinematics of rigid bodies, frames of reference, velocity and acceleration, rotating frame of reference, relative velocity and acceleration, gyroscopic acceleration; kinetics of rigid bodies, linear momentum and Euler's first law; angular momentum and Euler's second law; centre of mass; moments of inertia, parallel axis and parallel plane theorems, principal axes and principal moments of inertia, rotation about an axis; impulse and momentum; work and energy, kinetic and potential energies; applications to orbital and gyroscopic motion; introduction to Lagrangian methods.
BE/BSc students can enrol in PHYS2011, PHYS2012, or advanced equivalent, as acceptable alternative.
AMME2261 Fluid Mechanics 1

Credit points: 6 Session: Semester 1 Classes: 3 hours of lectures and 2 hours of tutorials per week, 6hrs of laboratory work per semester. Prohibitions: AMME2200 Assumed knowledge: MATH1001; MATH1002; MATH1003; or advanced versions. Assessment: Through semester assessment (45%), Final Exam (55%) Campus: Camperdown/Darlington Mode of delivery: Normal (lecture/lab/tutorial) Day
Note: Department permission required for enrolment
Note: Students are expected to be familiar with basic, first year, integral calculus, differential calculus and linear algebra.
This unit covers the fundamentals of fluid statics and fluid dynamics. At the end of this unit students will have: an understanding of the basic equations governing the statics and dynamics of fluids; the ability to analyze and determine the forces applied by a static fluid; the ability to analyse fluids in motion. The course will cover both inviscid and viscous fluid flow. The course will introduce the relevant parameters for fluid flow in internal engineering systems such as pipes and pumps and external systems such as flow over wings and airfoils. Course content will cover the basic concepts such as viscosity, density, continuum, pressure, force, buoyancy and acceleration; and more detailed methods including continuity, conservation of momentum, streamlines and potential flow theory, Bernoulli equation, Euler equation, Navier-Stokes equation. Experiments will introduce flow measuring devices and flow observation.
AMME2262 Thermal Engineering 1

Credit points: 6 Session: Semester 2 Classes: 3 hours of lectures and 2 hours of tutorials per week. 12 hrs of laboratory work per semester. Prohibitions: AMME2200 Assumed knowledge: MATH1001; MATH1002; MATH1003 or advanced versions. Assessment: Through semester assessment(50%), Final Exam (50%) Campus: Camperdown/Darlington Mode of delivery: Normal (lecture/lab/tutorial) Day
Note: Department permission required for enrolment
Note: Students are expected to be familiar with basic, first year, integral calculus, differential calculus and linear algebra.
This unit aims to teach the basic laws of thermodynamics and heat transfer. At the end of this unit students will have: an understanding of the basic laws of thermodynamics and heat transfer; The ability to analyze the thermodynamics of a simple open or closed engineering system. The basic knowledge to analyse and design 1D thermal circuits. Course content will include concepts of heat and work, properties of substances, first law of thermodynamics, control mass and control volume analysis, thermal efficiency, entropy, second law of thermodynamics, reversible and irreversible processes, isentropic efficiency, power and refrigeration cycles, heat transfer by conduction, convection and radiation, 1D thermal circuits and transient heat transfer.
MECH2400 Mechanical Design 1

Credit points: 6 Session: Semester 2 Classes: 2hr Lectures; 2hrs tuts/lab per week Assumed knowledge: ENGG1801 and ENGG1802, HSC Maths and Physics Assessment: Through semester assessment (100%) Campus: Camperdown/Darlington Mode of delivery: Normal (lecture/lab/tutorial) Day
Aim: For students to experience a realistic the design process and to develop good engineering skills.
Course Objectives: To develop an understanding of:
1. the need for and use of standard drawings in the communication and definition of parts and assemblies,
2. Efficient use of a CAD package
3. creativity,
4. the design process from initial idea to finished product
5. Methods used to analyse designs
6. standard components
AERO2705 Space Engineering 1

Credit points: 6 Session: Semester 2 Classes: 2 hours of lectures and 2 hours of tutorials per week Prerequisites: (AERO1560 OR MECH1560 OR MTRX1701 OR ENGG1800) AND MATH1001 AND MATH1002 AND MATH1003 Assumed knowledge: First Year Maths and basic programming skills. Assessment: Through semester assessment(50%), Final Exam (50%) Campus: Camperdown/Darlington Mode of delivery: Normal (lecture/lab/tutorial) Day
This unit aims to introduce students to the terminology, technology and current practice in the field of Space Engineering. Course content will include a variety of topics in the area of orbital mechanics, satellite systems and launch requirements. Case studies of current systems will be the focus of this unit.

Third year

AERO3260 Aerodynamics 1

Credit points: 6 Session: Semester 2 Classes: 3 hours of lectures and 2 hours of tutorials per week. Associated laboratory sessions during semester. Prerequisites: AMME2200 AND (MATH2061 OR MATH2067 OR MATH2961) Assumed knowledge: General conservation equations applied to fluid flow; Fundamental elements of potential flow; Vorticity and its effect on ideal flow; Basic mathematical skills required for plotting and graphing data; Linear algebra for solution of simultaneous linear equations; Fourier series; Complex numbers and complex functions. Assessment: Through semester assessment(50%), Final Exam (50%) Campus: Camperdown/Darlington Mode of delivery: Normal (lecture/lab/tutorial) Day
This UoS should prepare students to be able to undertake aerodynamic performance calculations for industry design situations. The unit aims to develop a knowledge and appreciation of the complex behaviour of airflow in the case of two dimensional aerofoil sections and three dimensional wings; To encourage hands-on experimentation with wind-tunnel tests to allow an understanding of these concepts and their range of applicability. To understand the limitations of linearised theory and the effects of unsteady flow.
AERO3360 Aerospace Structures 1

Credit points: 6 Session: Semester 1 Classes: 3 hours of lectures and 2 hours of tutorials per week Prerequisites: AMME2301 Assessment: Through semester assessment(45%), Final Exam (55%) Campus: Camperdown/Darlington Mode of delivery: Normal (lecture/lab/tutorial) Day
This unit aims to develop a student's understanding of the theoretical basis of advanced aerospace structural analysis; and introduce students to the solution of real-world aircraft structural problems. This UoS will develop the following attributes: An understanding of the derivation of the fundamental equations of elasticity and their application in certain analytical problems; An understanding of plate theory and the ability to use this to obtain analytical solutions for plate bending and buckling problems; An understanding of energy-method to develop a deeper appreciation for the complexities of designing solution techniques for structural problems; An understanding of the basic principals behind stressed-skin aircraft construction and the practical analysis of typical aircraft components, including the limitations of such techniques. At the end of this unit students will have an understanding of: 2-D and 3-D elasticity: general equations and solution techniques; Energy methods in structural analysis, including the principles of virtual work and total potential and complimentary energies; Fundamental theory of plates, including in-plane and bending loads as well as buckling and shear instabilities; Solution techniques for plate problems including: Navier solutions for rectangular plates; Combined bending and in-plane loading problems; Energy methods for plate-bending; and Plate buckling for compression and shear loadings; Bending of beams with unsymmetrical cross-sections; Basic principals and theory of stressed-skin structural analysis; Determination of direct stresses and shear flows in arbitrary thin-walled beams under arbitrary loading conditions including: Unsymmetrical sections, Open and closed sections, Single and multi-cell closed sections, Tapered sections, Continuous and idealized sections; The analysis of common aircraft components including fuselages, wings, skin-panels, stringers, ribs, frames and cut-outs; The effects of end constraints and shear-lag on the solutions developed as well as an overall appreciation of the limitations of the solution methods presented
AERO3460 Aerospace Design 1

Credit points: 6 Session: Semester 1 Classes: 2 hours of lectures and 3 hours of in-class project work per week. Prerequisites: AMME2301 and MECH2400 Assessment: Through semester assessment (100%) Campus: Camperdown/Darlington Mode of delivery: Normal (lecture/lab/tutorial) Day
This unit aims to introduce students to the theory and practice of aircraft component design. In doing so it will emphasize all the considerations, trade-offs and decisions inherent in this process and thus enable students to gain an understanding of why aircraft structures are designed in the way they are with respect to aircraft operational, certification, manufacturing and cost considerations. At the end of this unit students will be able to understand the design process, especially as it applies to aircraft individual component design; Have a familiarity with some of the standard industry practices for component design; An increasing familiarity with typical aerospace analysis techniques along with the primary failure modes that need to be considered; An understanding of the importance of different failure modes for different components and how these relate to load-conditions; a farmilarity with the operating environment that must be considered when designing components; and understanding of some off the legal and ethical requirements of aircraft design engineers to give a basic understanding of the regulatory framework in which aircraft design is conducted.
AMME3500 System Dynamics and Control

Credit points: 6 Session: Semester 1 Classes: 2 hours of lectures and 3 hours of tutorials per week Prerequisites: AMME2500; (MATH2061 or MATH2961 or MATH2067) Assessment: Through semester assessment (40%), Final Exam (60%) Campus: Camperdown/Darlington Mode of delivery: Normal (lecture/lab/tutorial) Day
This unit of study aims to allow students to develop an understanding of methods for modeling and controlling linear, time-invariant systems. Techniques examined will include the use of differential equations and frequency domain approaches to modeling of systems. This will allow students to examine the response of a system to changing inputs and to examine the influence of external stimuli such as disturbances on system behaviour. Students will also gain an understanding of how the responses of these mechanical systems can be altered to meet desired specifications and why this is important in many engineering problem domains.
The study of control systems engineering is of fundamental importance to most engineering disciplines, including Electrical, Mechanical, Mechatronic and Aerospace Engineering. Control systems are found in a broad range of applications within these disciplines, from aircraft and spacecraft to robots, automobiles, computers and process control systems. The concepts taught in this course introduce students to the mathematical foundations behind the modelling and control of linear, time-invariant dynamic systems.
In particular, topics addressed in this course will include:
1. Techniques for modelling mechanical systems and understanding their response to control inputs and disturbances. This will include the use of differential equations and frequency domain methods as well as tools such as Root Locus and Bode plots.
2. Representation of systems in a feedback control system as well as techniques for determining what desired system performance specifications are achievable, practical and important when the system is under control
3. Theoretical and practical techniques that help engineers in designing control systems, and an examination of which technique is best in solving a given problem.
AERO3261 Propulsion

Credit points: 6 Session: Semester 2 Classes: 3 hours of lectures and 2 hours of tutorials per week Prerequisites: AMME2200 or (AMME2261 and AMME2262) Assumed knowledge: Good knowledge of fluid dynamics and thermodynamics Assessment: Through semester assessment(55%), Final Exam (45%) Campus: Camperdown/Darlington Mode of delivery: Normal (lecture/lab/tutorial) Day
This unit aims to develop and understanding of aircraft propulsion systems. Students will learn to solve problems related to the analysis and selection of various propulsion systems in use - propellers, gas turbines, etc.
The topics covered include:Propulsion unit requirements for subsonic and supersonic flight; thrust components, efficiencies, additive drag of intakes. Piston engine components and operation. Propeller theory. Operation, components and cycle analysis of gas turbine engines; turbojets; turbofans; turboprops; ramjets. Components: compressor; fan; burner; turbine; nozzle. Efficiency of components; Off-design considerations. Future directions; minimisation of noise and pollution; scram-jets; hybrid engines.
AERO3560 Flight Mechanics 1

Credit points: 6 Session: Semester 1 Classes: 3 hours of lectures and 2 hours of tutorials per week. 2 hours of laboratory work per semester. Prerequisites: AMME2500 Corequisites: AMME3500 Assumed knowledge: This Unit of Study builds on basic mechanics and aerodynamics material covered in previous Units and focuses it towards the analysis and understanding of aircraft flight mechanics. It is expected that students have satisfactorily completed the following material: ENGG1802 Engineering Mechanics: Forces, moments, equilibrium, momentum, energy, linear and angular motion. AMME2500 Engineering Dynamics 1: Mechanisms, kinematics, frames of reference, mass and inertia, dynamics. If you struggled to pass MECH2500 and/or ENGG1802, you should spend some time revising the material of those Units of Study early in the semester. Assessment: Through semester assessment(50%), Final Exam (50%) Campus: Camperdown/Darlington Mode of delivery: Normal (lecture/lab/tutorial) Day
This unit aims to develop an understanding of aircraft longitudinal equilibrium, static stability, dynamic stability and response. Students will develop an understanding of the importance and significance of flight stability, will gain skills in dynamic system analysis and will learn mathematical tools used for prediction of aircraft flight behaviour. Students will gain skills in problem solving in the area of flight vehicle motion, and learn the fundamentals of flight simulation. At the end of this unit students will be able to understand: aircraft flight conditions and equilibrium; the effects of aerodynamic and propulsive controls on equilibrium conditions; the significance of flight stability and its impact of aircraft operations and pilot workload; the meaning of aerodynamic stability derivatives and their sources; the effects of aerodynamic derivatives on flight stability; the impact of flight stability and trim on all atmospheric flight vehicles. Students will also be able to model aircraft flight characteristics using computational techniques and analyse the aircraft equations of rigid-body motion and to extract stability characteristics. Course content will include static longitudinal aircraft stability: origin of symmetric forces and moments; static and manoeuvring longitudinal stability, equilibrium and control of rigid aircraft; aerodynamic load effects of wings, stabilisers, fuselages and power plants; trailing edge aerodynamic controls; trimmed equilibrium condition; static margin; effect on static stability of free and reversible controls.
AERO3760 Space Engineering 2

Credit points: 6 Session: Semester 2 Classes: 2 hours of lectures and 2 hours of project work sessions per week. Prerequisites: AERO2705 Assessment: Through semester assessment (100%) Campus: Camperdown/Darlington Mode of delivery: Normal (lecture/lab/tutorial) Day
This unit aims to provide students with a learning environment that promotes systems thinking and allows students to develop skills in systems analysis and design. In particular the UoS will focus on Aerospace systems, and students will develop both theoretical and practical skills in the area of systems engineering for this discipline. The primary objective is to develop fundamental systems engineering and systems thinking skills. At the end of this unit students will be able to: define the requirements process and be able to apply it to aerospace systems design.; conduct requirements analysis for an aerospace system and to drill down through requirements breakdown and the use of the V-diagram in this analysis; conduct functional and technical analysis and determine design drivers in a system; manage the use of a log book and its application in engineering design; develop technical skills in the design and development of satellite subsystems; conduct appropriate interaction processes between team members for the successful achievement of goals. Course content will include fundamentals of systems engineering; satellite subsystems; systems design.

Fourth year

AERO4701 Space Engineering 3

Credit points: 6 Session: Semester 1 Classes: 2 hours of lectures and 2 hours of tutorials per week Prerequisites: AERO3760 Assessment: Through semester assessment (100%) Campus: Camperdown/Darlington Mode of delivery: Normal (lecture/lab/tutorial) Day
This UoS aims to teach students the fundamental principles and methods of designing solutions to optimal estimation and control problems in space engineering applications. Students will apply learned techniques in optimal estimation and control theory to solving a wide range of different problems in engineering such as satellite positioning systems, satellite attitude determination, satellite orbit determination and remote sensing, optimal flight control, reentry and orbit transfers. Students will learn to recognize and appreciate the coupling between the different elements within an estimation and control task, from a systems-theoretic perspective.
ENGG4000 Practical Experience

Session: Semester 1,Semester 2 Classes: no formal classes Prerequisites: 36 Credit Points of Senior Units Assessment: Proposal, Report Portfolio (100%) Practical field work: Equivalent of 12 weeks in industry Campus: Camperdown/Darlington Mode of delivery: Professional Practice
Note: Students should have completed three years of their BE program before enrolling in this unit.
The BE requires students to obtain industrial work experience of twelve weeks duration (60 working days) or its equivalent towards satisfying the requirements for award of the degree. Students are recommended to undertake their work experience in the break between Year 3 and 4, however any engineering work taken after Year 2 may be accepted for the requirements of this unit.
Students must be exposed to professional engineering practice to enable them to develop an engineering approach and ethos, and to gain an appreciation of engineering ethics. and to gain an appreciation of engineering ethics.
The student is required to inform the Faculty of any work arrangements by emailing the Undergraduate Administration Office of the Faculty of Engineering and Information Technologies prior to the commencement of work. Assessment in this unit is by the submission of a portfolio containing written reports on the involvement with industry. For details of the reporting requirements, go to the faculty`s Practical Experience web site.
Students should have completed three years of their BE program before enrolling in this unit.

Students must select 12cp from the following block of units.

Students enrol in either Honours Thesis A&B or Engineering Project A&B. For enrolment in Honours a WAM of 65% or greater is required.
AMME4111 Honours Thesis A

Credit points: 6 Session: Semester 1,Semester 2 Classes: Project Work - own time, Prerequisites: 36 credits of 3rd year units of study and WAM 65 or over. Corequisites: AMME4112 Prohibitions: AMME4121, AMME4122, AMME4010 Assessment: Through semester assessment (100%) Campus: Camperdown/Darlington Mode of delivery: Supervision
Note: Department permission required for enrolment
The fourth year honours thesis aims to provide students with the opportunity to carry out a defined piece of independent research in a setting and in a manner that fosters the development of engineering research skills. These skills include the capacity to define a research question, showing how it relates to existing knowledge, identifying the tools needed to investigate the question, carrying out the research in a systematic way, analysing the results obtained and presenting the outcomes in a report that is clear, coherent and logically structured. Honours thesis is undertaken across two semesters of enrolment, in two successive Units of Study of 6 credits points each. Honours Thesis A covers first steps of thesis research starting with development of research proposal. Thesis B covers the second of stage writing up and presenting the research results.
Students are asked to write a thesis based on a research project, which is very often related to some aspect of a staff member's research interests. Some projects will be experimental in nature, others may involve computer-based simulation, feasibility studies or the design, construction and testing of equipment. Direction of thesis work may be determined by the supervisor or be of an original nature, but in either case the student is responsible for the execution of the practical work and the general layout and content of the thesis itself. The final thesis must be the student's individual work, although research is sometimes conducted in the framework of a group project shared with others. Students undertaking research on this basis will need to take care in ensuring the individual quality of their own research work and the final thesis submission. The thesis will be judged on the extent and quality of the student's original work and particularly how critical, perceptive and constructive he or she has been in assessing his/her work and that of others. Students will also be required to present the results of their findings to their peers and supervisors as part of a seminar program.
It is not expected that a thesis at this level will represent a significant contribution to new knowledge; nor is it expected that theses will resolve great intellectual problems. The timeframe available for the thesis is simply too short to permit students to tackle complex or difficult problems. Indeed, a key aim of the thesis is to specify a research topic that arouses sufficient intellectual curiosity, and presents an appropriate range and diversity of technical and conceptual challenges, while remaining manageable and allowing achievable outcomes within the time and resources available. It is important that the topic be of sufficient scope and complexity to allow a student to learn their craft and demonstrate their research skills. Equally imperative is that the task not be so demanding as to elude completion.
Normally taken in Semester 1
AMME4112 Honours Thesis B

Credit points: 6 Session: Semester 1,Semester 2 Classes: Project Work - own time, Prerequisites: 36 credits of 3rd year units of study and WAM 65 or over Prohibitions: AMME4121, AMME4122, AMME4010 Assessment: Through semester assessment (100%) Campus: Camperdown/Darlington Mode of delivery: Supervision
Note: Department permission required for enrolment
The fourth year honours thesis aims to provide students with the opportunity to carry out a defined piece of independent research or design work in a setting and in a manner that fosters the development of engineering skills in research or design. These skills include the capacity to define a research or design question, showing how it relates to existing knowledge, identifying the tools needed to investigate the question, carrying out the research or design in a systematic way, analysing the results obtained and presenting the outcomes in a report that is clear, coherent and logically structured. Honours thesis is undertaken across two semesters of enrolment, in two successive Units of Study of 6 credits points each. Honours Thesis A covers first steps of thesis research starting with development of research proposal. Thesis B covers the second of stage writing up and presenting the research results.
Students are asked to write a thesis based on a research or major design project, which is very often related to some aspect of a staff member's research interests. Some projects will be experimental in nature, others may involve computer-based simulation, feasibility studies or the design, construction and testing of equipment. Direction of thesis work may be determined by the supervisor or be of an original nature, but in either case the student is responsible for the execution of the practical work and the general layout and content of the thesis itself. The final thesis must be the student's individual work, although research is sometimes conducted in the framework of a group project shared with others. Students undertaking research on this basis will need to take care in ensuring the individual quality of their own research work and the final thesis submission. The thesis will be judged on the extent and quality of the student's original work and particularly how critical, perceptive and constructive he or she has been in assessing his/her work and that of others. Students will also be required to present the results of their findings to their peers and supervisors as part of a seminar program.
It is not expected that a thesis at this level will represent a significant contribution to new knowledge; nor is it expected that theses will resolve great intellectual problems. The time frame available for the thesis is simply too short to permit students to tackle complex or difficult problems. Indeed, a key aim of the thesis is to specify a research or design topic that arouses sufficient intellectual curiosity, and presents an appropriate range and diversity of technical and conceptual challenges, while remaining manageable and allowing achievable outcomes within the time and resources available. It is important that the topic be of sufficient scope and complexity to allow a student to learn their craft and demonstrate their research or design skills. Equally imperative is that the task not be so demanding as to elude completion.
Normally taken in Semester 2
AMME4121 Engineering Project A

Credit points: 6 Session: Semester 1,Semester 2 Classes: Project Work - own time Prerequisites: 30 credit points of senior units of study. Prohibitions: AMME4111, AMME4112, AMME4010 Assessment: Through semester assessment (100%) Campus: Camperdown/Darlington Mode of delivery: Supervision
To complete the research requirement for their engineering degree, students now have a choice of either completing Honours Thesis A/B (AMME 4111/AMME4112) or Project A/B (AMME 4121/AMME4122). Project A/B is intended to be more practical in orientation while Thesis A/B demands extensive literature review and critical analysis of outcomes. Honours Thesis is a program for individuals whereas Projects can be done by groups or by an individual. Engineering Project A/B is undertaken across two semesters of enrolment, in two successive Units of Study of 6 credits points each. Engineering Project A covers first steps of project work, starting with development of project proposal. Project B covers the second of stage writing up and presenting the project results. The fourth year engineering project aims to provide students with the opportunity to carry out a defined piece of independent design work in a setting and in a manner that fosters the development of engineering design skills. These skills include the capacity to define a engineering design problem, showing how it relates to prior art, identifying appropriate tools and methods, carrying out a design in a systematic way and presenting outcomes in a report that is clear, coherent and logically structured
Normally taken in Semester 1.
AMME4122 Engineering Project B

Credit points: 6 Session: Semester 1,Semester 2 Classes: Project Work - own time Prerequisites: AMME4121 and 30 credits of 3rd year units of study Prohibitions: AMME4111, AMME4112, AMME4010 Assessment: Through semester assessment (100%) Campus: Camperdown/Darlington Mode of delivery: Supervision
To complete the research requirement for their engineering degree, students now have a choice of either completing Honours Thesis A/B (AMME 4111/AMME4112) or Project A/B (AMME 4121/AMME4122). Project A/B is intended to be more practical in orientation while Thesis A/B demands extensive literature review and critical analysis of outcomes. Honours Thesis is a program for individuals whereas Projects can be done by groups or by an individual. Engineering Project A/B is undertaken across two semesters of enrolment, in two successive Units of Study of 6 credits points each. Engineering Project A covers first steps of project work, starting with development of project proposal. Project B covers the second of stage writing up and presenting the project results. The fourth year engineering project aims to provide students with the opportunity to carry out a defined piece of independent design work in a setting and in a manner that fosters the development of engineering design skills. These skills include the capacity to define a engineering design problem, showing how it relates to prior art, identifying appropriate tools and methods, carrying out a design in a systematic way and presenting outcomes in a report that is clear, coherent and logically structured
Normally taken in Semester 2
Students in the Honours program must enrol in AMME4111 & AMME4112, students in the Pass program must enrol in AMME4121 & AMME4122.

Acceptable alternative units of study

BE/BSc students can enrol in PHYS2011, PHYS2012, or advanced equivalent, as acceptable alternative to AMME2500.
Most units of study offered by the Faculty of Science shown in the tables can be replaced by an equivalent advanced level unit, subject to prerequisite conditions (as required by the Faculty of Science) being met.
Students undertaking Study Abroad in a particular year of their degree must enrol in the appropriate AMME International Exchange Program units of study as an alternative to a semester's standard units.

Resolutions of the Faculty of Engineering and Information Technologies relating to this table:

BE(Aeronautical Engineering)(Space)

In addition to gaining credit for the core units of study set out in the above table, candidates are required to complete 24 credit points of recommended elective units of study for Aeronautical (Space) Engineering and 6 credit points of free elective units of study. A minimum of 192 credit points is required to be eligible for the award of BE(Aeronautical)(Space).

BE(Aeronautical Engineering)(Space)/BSc or BMedSc or BCom or BPM

In addition to gaining credit for the core units of study set out in the above table, candidates are required to complete at least 6 credit points of recommended elective units of study for Aeronautical (Space) Engineering and 96 credit points of units of study given by the Faculty of Science for the BE/BSc or BE/BMedSc; or the Business School for the BE/BCom or from the core units table for BPM. A minimum of 240 credit points is required to be eligible for the combined degrees. Candidates should refer to the Joint Resolutions of the Faculty of Engineering and Information Technologies and the faculty in which they are undertaking the combined degree.

BE(Aeronautical Engineering)(Space)/BA

In addition to gaining credit for the core units of study set out in the above table, candidates are required to complete at least 12 credit points of recommended elective units of study for Aeronautical (Space) Engineering and 84 credit points of units of study given by the Faculty of Arts and Social Sciences for the BE/BA. A minimum of 240 credit points is required to be eligible for the combined degree. Candidates should refer to the Joint Resolutions of the Faculty of Engineering and Technologies and the faculty in which they are undertaking the combined degree.

BE(Aeronautical Engineering)(Space)/LLB

In addition to gaining credit for the core units of study set out in the above table, candidates are required to complete at least 6 credit points of recommended elective units of study for Aeronautical (Space) Engineering and 144 credit points of units of study given by the Faculty of Law for the BE/LLB. A minimum of 288 credit points is required to be eligible for the combined degrees. Candidates should refer to the Joint Resolutions of the Faculty of Engineering and Information Technologies and the Faculty of Law.

Recommended elective units of study

AERO3660 Aerospace Management

Credit points: 6 Session: Semester 2 Classes: 3 hours of lectures and 2 hours of tutorials per week. Assessment: Through semester assessment(100%) Campus: Camperdown/Darlington Mode of delivery: Normal (lecture/lab/tutorial) Day
This unit aims to develop knowledge and understanding of the current state of aerospace design, manufacturing, and operations in the Australian aviation industry. Students will gain skills in aerospace engineering management. On satisfactory completion of this unit, students will be able to apply risk management skills to a variety of industry situations and use appropriate methodology to manage these situations. Students will also become proficient in the use of Project Management tools and learn how to apply them to industry standard problems. Subject areas covered within the Unit of Study include principles and practice of aviation and airline management; discussion and analysis of airline operations; flight safety and airworthiness standards; risk and reliability management; and management in aerospace engineering design.
AERO4260 Aerodynamics 2

Credit points: 6 Session: Semester 2 Classes: 3 hours of lectures and 2 hours of tutorials per week. Prerequisites: AMME2200 Assessment: Through semester assessment (20%), Final Exam (80%) Campus: Camperdown/Darlington Mode of delivery: Normal (lecture/lab/tutorial) Day
This unit aims to introduce students to: elementary and advanced topics in Gasdynamics (High Speed Flows). Course content will include review of Equations of Gasdynamics, One-Dimensional Gas Flow, Isentropic Flows, Normal Shock, Flow in a Converging and a Converging-Diverging Nozzle, Steady Two-dimensional Supersonic flow, Shock waves (Normal and Oblique), Method of Characteristics, Two-dimensional Supersonic Aerofoils, Introduction to Three-dimensional Effects, Unsteady Flows, Moving Shock, Shock Tube Flow and Transonic Flow and Compressible Boundary Layers. At the end of this unit the student will be able to calculate a high speed flow about an aerofoil and compressible flow through a duct of varying cross section and will have a good appreciation of Transonic and Hypersonic Flows.
AERO4360 Aerospace Structures 2

Credit points: 6 Session: Semester 1 Classes: 2.5 hours of lectures and 2 hours of tutorials per week. Prerequisites: AERO3360 Assessment: Through semester assessment (55%), Final Exam (45%) Campus: Camperdown/Darlington Mode of delivery: Normal (lecture/lab/tutorial) Day
This unit aims to teach fundamentals of modern numerical and analytical techniques for evaluating stresses, strains, deformations and strengths of representative aerospace structures. In particular the focus is on developing an understanding of: Fundamental concepts and formulations of the finite element methods for basic structural analysis; Elements for typical aerospace structures, such as beams/frames, plates/shells, and their applications and limitations; Finite element techniques for various types of problems pertinent to aerospace structures; d)and, developing hands-on experience of using selected commercial finite element analysis program. At the end of this unit of study the following will have been covered: Introduction to Finite Element Method for modern structural and stress analysis; One-dimensional rod elements; Generalization of FEM for elasticity; Two- and three-dimensional trusses; FEA for beams and frames in 2D and 3D; Two-dimensional problems using constant strain triangular elements; The two-dimensional isoparametric elements; Plates and shells elements and their applications; FEA for axisymmetric shells and pressure vessels, shells of revolution; FEA for axisymmetric solids subjected to axi-symmetric loading; FEA for structural dynamics, eigenvalue analysis, modal response, transient response; Finite element analysis for stress stiffening and buckling of beams, plates and shells; Three-dimensional problems in stress analysis; Extensions to the element library, higher order elements, special elements; Constraints; FEA modeling strategy; FEA for heat conduction; FEA for non-linear material and geometric analysis.
AERO4560 Flight Mechanics 2

Credit points: 6 Session: Semester 1 Classes: 2 hours of lectures and 3 hours of tutorials per week Prerequisites: AERO3560 and AMME3500 Assumed knowledge: AMME2500 develops the basic principles of engineering mechanics and system dynamics that underpin this course. AERO3560 Flight Mechanics 1 develops the specifics of aircraft flight dynamics and stability. AMME3500 Systems control covers basic system theory and control system synthesis techniques. Assessment: Through semester assessment (50%), Final Exam (50%) Campus: Camperdown/Darlington Mode of delivery: Normal (lecture/lab/tutorial) Day
This unit aims to develop an understanding of the application of flight mechanics principles to modern aircraft systems. Students will gain skills in problem solving in the areas of dynamic aircraft behaviour, aircraft sensitivity to wind gusts, control systems development and aircraft handling analysis. At the end of this unit students will be able to: Uunderstand the nature of an aircraft's response to control inputs and atmospheric disturbances, including the roles of the various modes of motion; Analyse an aircraft's response to control inputs in the frequency domain using Laplace Transforms and Transfer Function representations; Represent and model wind gust distributions using stochastic methods (Power Spectral Density); Analyse an aircraft's response to disturbances (wind gust inputs) by combining Transfer Function representations with gust PSD's; Uunderstand the principles of stability augmentation systems and autopilot control systems in aircraft operation, their functions and purposes; Understand basic feedback control systems and classical frequency domain loop analysis; Understand the characteristics of closed loop system responses; Understand the characteristics of PID, Lead, Lag and Lead-Lag compensators, and to be competent in designing suitable compensators using Bode and Root-locus design techniques; Design multi-loop control and guidance systems and understand the reasons for their structures.
AERO5200 Advanced Aerodynamics

Credit points: 6 Session: Semester 1 Classes: 2 hours of lectures and 2 hours of tutorials per week Prerequisites: AERO5210 or AERO3260 Assumed knowledge: BE in the area of Aerospace Engineering or related Engineering field. Assessment: Through semester assessment(100%) Campus: Camperdown/Darlington Mode of delivery: Normal (lecture/lab/tutorial) Day
Note: Department permission required for enrolment
Objectives/Expected Outcomes: To develop a specialist knowledge in the fields of computational, non-linear and unsteady aerodynamics.
Syllabus Summary: Introduction to transonic flows and application to design of aircraft components. Elements of Hypersonic flow; real gas effects Boundary layer in compressible flow and shock - boundary layer interaction. ; flutter and divergence. Solution of aerospace flow problems using finite volume methods. Unsteady supersonic one-dimensional flow. Hypersonic flow. Introduction to the use of CFD for transonic flow. Rarefied gas dynamics. Direct simulation method (DSMC); near-continuum solutions. Simulation techniques for numerical solutions of non-linear continuum flow.
AERO5400 Advanced Aircraft Design Analysis

Credit points: 6 Session: Semester 2 Classes: 4 hours of lectures per week. Assumed knowledge: BE in area of Aerospace Engineering or related Engineering field with familiarity in aircraft design. Assessment: Through semester assessment (100%) Campus: Camperdown/Darlington Mode of delivery: Normal (lecture/lab/tutorial) Day
This Unit aims to provide familiarity and understanding with practical aircraft design processes expected in industry, including the evaluation and case studies of existing aircraft designs. Students will gain a better understanding of relevant issues particularly related to the design of aircraft with a level of confidence to lead them to develop new designs or modifications, having a good balance between theory and real-world applications. Good familiarity with unique and stringent international aviation regulations and certification processes will be expected with respect to the design of aircraft. Topics coved by the lectures will include aircraft specifications; aircraft selection and evaluation; aircraft configuration design; design considerations for aerodynamics, structures, systems, manufacture, testing, certification, life-cycle-cost, operations; the use of computational aircraft design tools, in particular DARcorp's Advanced Aircraft Analysis (AAA); and introduction to multidisdiplinary design optimisation methods. Projects will be based on case study analyses and evaluation of aircraft types to operational specifications and requirements.
AERO5500 Flight Mechanics Test and Evaluation Adv

Credit points: 6 Session: Semester 2 Classes: 3 hours of lectures and 2 hours of tutorials per week. 2hrs of laboratory per semester. Prerequisites: AERO5510 OR AERO3560. Assumed knowledge: BE in area of Aerospace Engineering or related Engineering Field. Assessment: Through semester assessment (100%) Campus: Camperdown/Darlington Mode of delivery: Normal (lecture/lab/tutorial) Day
Note: All MPE and ME students are required to do AERO5510 unless they have already completed an equivalent to AERO5510/AERO3560. This UoS can then be taken as an advanced elective.
This unit aims to develop an understanding of aircraft flight test, validation and verification, and the development of modern flight control, guidance, and navigation systems. Students will gain skills in analysis, problem solving and systems design in the areas of aircraft dynamic system identification and control. At the end of this unit students will be able to understand elements of the following: the principles of stability augmentation systems and autopilot control systems in aircraft operation, their functions and purposes; the characteristics of closed loop system responses; advanced feedback control systems and state-space design techniques; the concepts of parameter and state estimation; the design of observers in the state space and the implementation of a Kalman Filter; multi-loop control and guidance systems and the reasons for their structures; flight test principles and procedures and the implementation a flight test programme.
AERO5520 Aircraft Avionics and Systems

Credit points: 6 Session: Semester 2 Classes: 3hrs per week of lectures , workgroups, site visits and demonstrations through semester. Prerequisites: AERO5510 OR AERO3560 Assessment: Through semester assessment (100%) Campus: Camperdown/Darlington Mode of delivery: Normal (lecture/lab/tutorial) Day
Note: Department permission required for enrolment
This unit of study aims to develop a thorough qualitative understanding of modern avionics and aircraft systems. It deals with the full breadth of cockpit avionics systems and subsystems from flight instrument and display technology to flight management, flight control, navigation and sensor systems.
At the end of this unit students will be able to understand the following: the principles of modern cockpit display technologies and the information they portray; the functions of flight control and navigation systems and their interactions with actuation and other aircraft systems; engine management systems; communication systems; payload sensor systems; the interactions of avionics components with power, hydraulic, bus and communication systems together with their underlying physical principles; the principles of avionics system requirements, specification , design, regulation and certification; fault tolerance and redundancy; software engineering and system integration.
AERO5700 Space Engineering (Advanced)

Credit points: 6 Session: Semester 2 Classes: 2 hr of lectures per week, 2hr of tutorials per week Assumed knowledge: AERO3760 Assessment: Through semester assessment (100%) Campus: Camperdown/Darlington Mode of delivery: Normal (lecture/lab/tutorial) Day
Planetary observation using robotics and intelligents systems will grow in importance over the next decade. These systems can take the form of either intelligent spacecraft, robotic air vehicles or planetary rovers. In this subject we will study a wide range of robotic spacecraft systems that are used for planetary observation and focus on their specifications as well as their internal systems. From a practical perspective will be working hands on with the Mars Rover developed at the University of Sydney to study the various intelligent components and how they come together.
AMME5202 Advanced Computational Fluid Dynamics

Credit points: 6 Session: Semester 1 Classes: Lectures: 1 hour per week; Tutorials: 1 hour per week; Laboratory Sessions: 2 hours per week Assumed knowledge: Partial differential equations; Finite difference methods;Taylor series; Basic fluid mechanics including pressure, velocity, boundary layers, separated and recirculating flows. Basic computer programming skills. Assessment: Through semester assessment (100%) Campus: Camperdown/Darlington Mode of delivery: Normal (lecture/lab/tutorial) Day
Objectives: To provide students with the necessary skills to use commercial Computational Fluid Dynamics packages and to carry out research in the area of Computational Fluid Dynamics. Expected outcomes: Students will have a good understanding of the basic theory of Computational Fluid Dynamics, including discretisation, accuracy and stability. They will be capable of writing a simple solver and using a sophisticated commercial CFD package. Syllabus summary: A course of lectures, tutorials and laboratories designed to provide the student with the necessary tools for using a sophisticated commercial CFD package. A set of laboratory tasks will take the student through a series of increasingly complex flow simulations, requiring an understanding of the basic theory of computational fluid dynamics (CFD). The laboratory tasks will be complemented by a series of lectures in which the basic theory is covered, including: governing equations; finite difference methods accuracy and stability for the advection equation, diffusion equation; direct and iterative solution techniques; solution of the full Navier-Stokes equations; turbulent flow; Cartesian tensors; turbulence models.
AMME5510 Vibration and Acoustics

Credit points: 6 Session: Semester 2 Classes: 2 hrs of lectures per week, 2 hrs of tutorials per week, 8 hours of laoratory work per semester. Assumed knowledge: (AMME2301 OR AMME5301) AND (AMME2200 OR AMME5200) AND (AMME2500 OR AMME5500). Assessment: Through semester assessment (35%), Final Exam (65%) Campus: Camperdown/Darlington Mode of delivery: Normal (lecture/lab/tutorial) Day
Note: Department permission required for enrolment
This UoS should prepare the student to be able to undertake vibration and acoustic measurement calculations for industry design situations.
The unit aims to introduce a number of new concepts required for analysis of vibrations and acoustics. The response of structure under different dynamic forces, including human and aerodynamic, will be investigated. A number of hands-on experiments will be performed to allow an understanding of the concepts and applicability.
The acoustics component will include: basic acoustics theory, sound generation and propagation, impedance, absorbing materials, industrial noise sources, isolation methods of noise control, enclosures, instrumentation and measurement, frequency analysis, noise regulations and computational acoustics.
AMME5520 Advanced Control and Optimisation

Credit points: 6 Session: Semester 1 Classes: 2hr lectures per week; 2h tutorial per week Prerequisites: AMME3500 OR AMME5501. Assessment: Through semester assessment (50%), Final exam (50%) Campus: Camperdown/Darlington Mode of delivery: Normal (lecture/lab/tutorial) Day
This unit introduces engineering design via optimization, i.e. finding the "best possible" solution to a particular problem. For example, an autonomous vehicle must find the fastest route between two locations over a road network; a biomedical sensing device must compute the most accurate estimate of important physiological parameters from noise-corrupted measurements; a feedback control system must stabilize and control a multivariable dynamical system (such as an aircraft) in an optimal fashion.
The student will learn how to formulate a design in terms of a "cost function", when it is possible to find the "best" design via minimization of this "cost", and how to do so. The course will introduce widely-used optimization frameworks including linear and quadratic programming (LP and QP), dynamic programming (DP), path planning with Dijkstra's algorithm, A*, and probabilistic roadmaps (PRMs), state estimation via Kalman filters, and control via the linear quadratic regulator (LQR) and Model Predictive Control (MPC). There will be constant emphasis on connections to real-world engineering problems in control, robotics, aerospace, biomedical engineering, and manufacturing.

Additional Electives

Students can select the unit below or other elective units offered within the University that are approved by Head of School of Aerospace, Mechanical, and Mechatronics Engineering.
ENGG1000 History and Philosophy of Engineering

Credit points: 6 Session: Int January,Semester 1,Semester 2 Classes: 1hr Lecture per week; 1hr Tutorial per week; 1 hr elearning session per week. Assessment: Through semester assessment (100%) Campus: Camperdown/Darlington Mode of delivery: Normal (lecture/lab/tutorial) Day
Note: Department permission required for enrolmentin the following sessions:Int January
ENGG1000 is a unique course that aims to provide students with an understanding of the historical development of Engineering with relation to societal expectations of the period. Engineering as a field of study and profession has developed over millennia from simple (yet significant) advances in technology such as the lever and wheel, to modern day examples such as advanced computers, nanomaterials and space flight.
Interaction between human society and Engineers has helped develop and guide the advancement of engineering technology; with society posing problems for Engineers to solve and Engineers developing new technology that changed the course of human history, and helped shape the world we live in.
The general philosophy behind Engineering is that Engineers work to fulfil the needs of society (water, electricity, technological improvements etc.), and as such Engineers are expected to act ethically towards society. The role of Engineers in society will be analysed and discussed from a humanistic perspective, with relation to the current Engineers Australia code of ethics. Other relevant philosophical analyses of Engineering as a skill and profession will also be examined such as, aesthetics, creativity, the epistemology of Engineering and more.
This course will use online resources extensively and help develop research and communication skills of students, whilst providing an overview of the historical significance of Engineers in society, and what it means to be an Engineer.

Note

Choice of electives as shown in the above table will depend on subject availability, timetabling and prerequisite conditions.


For a standard enrolment plan for Aeronautical (Space) Engineering visit cusp.sydney.edu.au/students/view-degree-page/name/BE(Aero)(Space)