Skip to main content
Unit of study_

BMET5911: Instrumentation for Nanobiotechnology

2025 unit information

This UoS offers fundamental knowledge about the working principles of scanning probe microscopies, microsensors and other key instrumentation in nanotechnology with a focus on biophysical, biomedical and material science applications. Scanning probe microscopes work in a variety of environments ranging from vacuum to liquids, and are frequently used to study samples spanning from single atoms all the way up to live cells and tissues. Besides imaging, these technologies enable the manipulation of matter and the acquisition of many physical and chemical properties of samples up to the atomic scale. The knowledge provided in this UoS is intended to improve the competences of the students to understand, use and create technologies of great value in nanotechnology with applications across multiple disciplines.

Unit details and rules

Managing faculty or University school:

Engineering

Study level Postgraduate
Academic unit Biomedical Engineering
Credit points 6
Prerequisites:
? 
None
Corequisites:
? 
None
Prohibitions:
? 
None
Assumed knowledge:
? 
Knowledge in calculus, linear differential equations, basic mechanics and electromagnetism

At the completion of this unit, you should be able to:

  • LO1. Find, critically analyse and effectively communicate research and technological developments described in scientific literature and/or patents that are related to nanotechnologies covered over the course.
  • LO2. Effectively interpret and communicate developed solutions to proposed problems.
  • LO3. Understand the value and need of multidisciplinary approaches to productively address scientific and technological challenges at the nanoscale in the interphase of physics, biology and engineering.
  • LO4. Understand and employ fundamental scientific working principles related to microresonators, scanning probe microscopies and other technologies of interest in nanotechnology.
  • LO5. Develop creative solutions changing the configuration and/or properties of key elements of microresonators and scanning probe microscopy techniques to theoretically achieve proposed aims.
  • LO6. Apply mathematical techniques to solve relevant equations of interest in nanotechnology.

Unit availability

This section lists the session, attendance modes and locations the unit is available in. There is a unit outline for each of the unit availabilities, which gives you information about the unit including assessment details and a schedule of weekly activities.

The outline is published 2 weeks before the first day of teaching. You can look at previous outlines for a guide to the details of a unit.

Session MoA ?  Location Outline ? 
Semester 1 2024
Normal day Camperdown/Darlington, Sydney
Session MoA ?  Location Outline ? 
Semester 1 2025
Normal day Camperdown/Darlington, Sydney
Outline unavailable
Session MoA ?  Location Outline ? 
Semester 1 2021
Normal day Camperdown/Darlington, Sydney
Semester 1 2021
Normal day Remote
Semester 1 2022
Normal day Camperdown/Darlington, Sydney
Semester 1 2022
Normal day Remote
Semester 1 2023
Normal day Camperdown/Darlington, Sydney

Find your current year census dates

Modes of attendance (MoA)

This refers to the Mode of attendance (MoA) for the unit as it appears when you’re selecting your units in Sydney Student. Find more information about modes of attendance on our website.