The importance of chemistry to understand the inner workings of biology has led to the emergence of the field of chemical biology. In recent years, the development of cutting-edge synthetic methods, as well as analytical and imaging technologies, have underpinned advances in drug discovery, diagnostics, genome sequencing and biocatalysis. In this unit, you will learn how chemical structure and reactivity underpins the function of all nature's biomolecules, from the enzymes that enable chemical reactions to occur inside cells, to the DNA featuring chemical modifications that affect how the genetic code is read. You will also learn how the development and application of modern synthetic chemistry can be used to generate designer biomolecules to perturb, manipulate and visualise cellular processes. Key examples include how we can synthesise an entire protein using synthetic chemistry alone, and how we can use fluorescent dyes to observe what is happening in live cells as a result of disease. You will gain insight into the rapidly advancing field of chemical biology, and how new chemistry-based technologies are being used to solve major problems in biology and medicine.
Unit details and rules
Academic unit | Chemistry Academic Operations |
---|---|
Credit points | 6 |
Prerequisites
?
|
[(CHEM2401 or CHEM2911 or CHEM2915) and (CHEM2402 or CHEM2524 or CHEM2912 or CHEM2916 or CHEM2924)] or (CHEM2521 or CHEM2921 or CHEM2991) |
Corequisites
?
|
None |
Prohibitions
?
|
CHEM3110 or CHEM3910 or CHEM3921 |
Assumed knowledge
?
|
None |
Available to study abroad and exchange students | Yes |
Teaching staff
Coordinator | Brendan Kennedy, brendan.kennedy@sydney.edu.au |
---|---|
Laboratory supervisor(s) | Asaph Widmer-Cooper, asaph.widmer-cooper@sydney.edu.au |
Lecturer(s) | Yu Heng Lau, yuheng.lau@sydney.edu.au |
Richard Payne, richard.payne@sydney.edu.au | |
Constance Bailey, constance.bailey@sydney.edu.au |