Useful links
Condensed matter physics is the science behind semiconductors and all modern electronics, while particle physics describes the very fabric of our Universe. Surprisingly these two seemingly separate aspects of physics use in part very similar formalisms. This unit provides an advanced introduction to both these fields, sharing some coursework with PHYS3936, but going into much more depth through a literature review project offering a critical view of a current research topic in condensed matter physics or particle physics. The particle physics part will introduce the basic constituents of matter, such as quarks and leptons, examining their fundamental properties and interactions. You will gain understanding of extensions to the currently accepted Standard Model of particle physics, and on the relationships between high energy particle physics, cosmology and the early Universe. The condensed matter part will cover the physics that underlies the electromagnetic, thermal, and optical properties of solids. Lectures will include discoveries and new developments in semiconductors, nanostructures, magnetism, and superconductivity, topics which will also be explored in computer lab tutorials. In addition, you will carry out an in-depth critical analysis on a topic of your choice in condensed matter physics and/or particle physics through a literature review research project. In completing this unit, you will gain understanding of the foundations of modern physics and develop research and critical thinking skills.
Study level | Undergraduate |
---|---|
Academic unit | Physics Academic Operations |
Credit points | 6 |
Prerequisites:
?
|
144 credit points of units of study including [6 credit points of (PHYS3X34 or PHYS3X90 or PHYS3991) and 6 credit points of (PHYS3X42 or PHYS3X43 or PHYS3X44)] |
---|---|
Corequisites:
?
|
None |
Prohibitions:
?
|
PHYS3036 or PHYS3936 or PHYS3080 or PHYS3980 or PHYS3068 or PHYS3968 or PHYS3069 or PHYS3969 or PHYS3074 or PHYS3974 |
Assumed knowledge:
?
|
(MATH2X21 or MATH2X61 or MATH2067). Students will need to have some knowledge of special relativity, for example from prior study of PHYS2013 or PHYS2913, or from studying Chapter 12 of "Introduction to Electrodynamics" by D.J. Griffith |
At the completion of this unit, you should be able to:
This section lists the session, attendance modes and locations the unit is available in. There is a unit outline for each of the unit availabilities, which gives you information about the unit including assessment details and a schedule of weekly activities.
The outline is published 2 weeks before the first day of teaching. You can look at previous outlines for a guide to the details of a unit.
Session | MoA ? | Location | Outline ? |
---|---|---|---|
Semester 1 2024
|
Normal day | Camperdown/Darlington, Sydney |
View
|
Session | MoA ? | Location | Outline ? |
---|---|---|---|
Semester 1 2025
|
Normal day | Camperdown/Darlington, Sydney |
Outline unavailable
|
Find your current year census dates
This refers to the Mode of attendance (MoA) for the unit as it appears when you’re selecting your units in Sydney Student. Find more information about modes of attendance on our website.