Condensed matter physics is the science behind semiconductors and all modern electronics, while particle physics describes the very fabric of our Universe. Surprisingly these two seemingly separate aspects of physics use in part very similar formalisms. This unit provides an advanced introduction to both these fields, sharing some coursework with PHYS3936, but going into much more depth through a literature review project offering a critical view of a current research topic in condensed matter physics or particle physics. The particle physics part will introduce the basic constituents of matter, such as quarks and leptons, examining their fundamental properties and interactions. You will gain understanding of extensions to the currently accepted Standard Model of particle physics, and on the relationships between high energy particle physics, cosmology and the early Universe. The condensed matter part will cover the physics that underlies the electromagnetic, thermal, and optical properties of solids. Lectures will include discoveries and new developments in semiconductors, nanostructures, magnetism, and superconductivity, topics which will also be explored in computer lab tutorials. In addition, you will carry out an in-depth critical analysis on a topic of your choice in condensed matter physics and/or particle physics through a literature review research project. In completing this unit, you will gain understanding of the foundations of modern physics and develop research and critical thinking skills.
Unit details and rules
Academic unit | Physics Academic Operations |
---|---|
Credit points | 6 |
Prerequisites
?
|
144 credit points of units of study including [6 credit points of (PHYS3X34 or PHYS3X90 or PHYS3991) and 6 credit points of (PHYS3X42 or PHYS3X43 or PHYS3X44)] |
Corequisites
?
|
None |
Prohibitions
?
|
PHYS3036 or PHYS3936 or PHYS3080 or PHYS3980 or PHYS3068 or PHYS3968 or PHYS3069 or PHYS3969 or PHYS3074 or PHYS3974 |
Assumed knowledge
?
|
(MATH2X21 or MATH2X61 or MATH2067). Students will need to have some knowledge of special relativity, for example from prior study of PHYS2013 or PHYS2913, or from studying Chapter 12 of Introduction to Electrodynamics" by D.J. Griffith" |
Available to study abroad and exchange students | Yes |
Teaching staff
Coordinator | Catherine Stampfl, catherine.stampfl@sydney.edu.au |
---|---|
Lecturer(s) | David McKenzie, david.mckenzie@sydney.edu.au |
Catherine Stampfl, catherine.stampfl@sydney.edu.au | |
Kevin Varvell, kevin.varvell@sydney.edu.au | |
Bruce Yabsley, bruce.yabsley@sydney.edu.au |