University of Sydney Handbooks - 2014 Archive

Download full 2014 archive Page archived at: Fri, 04 Apr 2014 13:43:56 +1100

Unit of study descriptions

Master of Professional Engineering (Biomedical)

To qualify for the award of the Master of Professional Engineering in this specialisation, a candidate must complete 144 credit points, including core and elective units of study as listed below.
Candidates with a Bachelor of Engineering or equivalent in the relevant discipline, and who have reached an acceptable level of academic achievement in their prior degree, may be eligible for a reduction of volume in learning of up to 48 credit points.

Core units

Year One

Year One covers Foundation units only. Candidates with a prior Bachelor of Engineering degree or equivalent in the field related to this specialisation may be exempted from Foundation units.

Year One - Semester One

AMME5302 Foundations of Materials 1

Credit points: 6 Session: Semester 1 Classes: Lectures: 3 hours per week; Tutorials: 2 hour per week. Prohibitions: CIVL2110 Assessment: Through semester assessment (45%), Final Exam (55%) Campus: Camperdown/Darlington Mode of delivery: Normal (lecture/lab/tutorial) Day Associated degrees: Grad Dip E (Prof Eng), M P E. Faculty: Engineering and Information Technologies
This UoS is an introductory course in engineering materials. The unit aims to develop students' understanding of the structures, mechanical properties and manufacture of a range of engineering materials as well as how the mechanical properties relate to microstructure and forming and treatment methods. The unit has no prerequisite subject and is therefore intended for those with little or no previous background in engineering materials. However the unit does require students to take a significant degree of independent responsibility for developing their own background knowledge of materials and their properties. The electrical, magnetic, thermal and optical properties of materials are a critical need-to-know area where students are expected to do most of their learning by independent study.
AMME5500 Foundations of Engineering Dynamics

Credit points: 6 Session: Semester 1 Classes: Lectures : 3 hours per week; Tutorials : 2 hours per week; Lab Sessions 6 hours per semester. Assumed knowledge: Physics, statics, Particle dynamics, Differential Calculus, Linear Algebra, Integral Calculus and Modelling Assessment: Through semester assessment (40%), Final Exam (60%) Campus: Camperdown/Darlington Mode of delivery: Normal (lecture/lab/tutorial) Day Associated degrees: Grad Dip E (Prof Eng), M P E. Faculty: Engineering and Information Technologies
This unit of study aims to teach: Dynamics of Rigid Bodies: Analysis of Planar mechanisms; Kinematics of rigid bodies; Kinetics of rigid bodies. Students will also develop their skills in: how to model and analyse dynamic systems and the application of theory to real systems through practical/laboratory sessions. At the end of this unit students will have developed skills in modelling and analysing planar mechanisms and rigid body dynamic systems. Course content will include planar mechanisms, linkages, mobility; instant centres of rotation, Kennedy's theorem; velocity and acceleration polygons; kinematics of rigid bodies, frames of reference, velocity and acceleration, rotating frame of reference, relative velocity and acceleration, gyroscopic acceleration; kinetics of rigid bodies, linear momentum and Euler's first law; angular momentum and Euler's second law; centre of mass; moments of inertia, parallel axis and parallel plane theorems, principal axes and principal moments of inertia, rotation about an axis; impulse and momentum; work and energy, kinetic and potential energies; applications to orbital and gyroscopic motion; introduction to Lagrangian methods.
AMME5700 Foundations of Instrumentation

Credit points: 6 Session: Semester 1 Classes: 2 hrs of lectures per week, 1hr of tutorials per week, 6 hrs of laboratory work per semester. Prerequisites: AERO1560 OR MECH1560 OR MTRX1701 OR ENGG1800 Assumed knowledge: ENGG1801. Programming Skills, 1st Year maths skills, familiarity with fundamental Aerospace concepts. Assessment: Through semester assessment (40%) , Final Exam (60%) Campus: Camperdown/Darlington Mode of delivery: Normal (lecture/lab/tutorial) Day Associated degrees: M P E. Faculty: Engineering and Information Technologies
This unit aims to develop in students an understanding of the engineering measurements and instrumentation systems. The students will acquire an ability to make accurate and meaningful measurements. It will cover the general areas of electrical circuits and mechanical/electronic instrumentation for strain, force, pressure, moment, torque, displacement, velocity, acceleration, temperature and so on.
ENGG5801 Foundations of Engineering Computing

Credit points: 6 Session: Semester 1 Classes: 2hrs Lectures per week, 2hrs of Lab session per week. Assessment: Through semester assessment (50%), Final Exam (50%) Campus: Camperdown/Darlington Mode of delivery: Normal (lecture/lab/tutorial) Day Associated degrees: M P E. Faculty: Engineering and Information Technologies
The unit will introduce students to fundamental principles of programming. The language used will be Matlab but the principles taught are readily portable to other languages like C and Java. The unit material will be presented in a manner which will help students to draw a connection between programming constructs and real engineering applications. The unit will use engineering inspired case-studies : especially from Civil, Chemical, Aerospace and Mechanical streams, to motivate new material. There will be a major project which uses programming to solve a real world engineering problem. The extensive Matlab library for visualization will also be introduced. Matlab will cover two-thirds of the unit. The remaining one-third will be devoted to the use of Excel in engineering scenarios. Furthermore, cross integration between Matlab and Excel will also be highlighted.

Year One - Semester Two

AMME5200 Foundations of Thermodynamics and Fluids

Credit points: 6 Session: Semester 2 Classes: Lectures : 3hr per week; Tutorials : 2 hours per week Assumed knowledge: Students are expected to be familiar with basic, first year, integral calculus, differential calculus and linear algebra. Assessment: Through semester assessment (35%), Final Exam (65%) Campus: Camperdown/Darlington Mode of delivery: Normal (lecture/lab/tutorial) Day Associated degrees: Grad Dip E (Prof Eng), M E, M P E. Faculty: Engineering and Information Technologies
This unit aims to teach the basic laws of thermodynamics and the fundamentals of fluid statics and dynamics. At the end of this unit students will have: an understanding of the basic laws of thermodynamics and basic equations governing the statics and dynamics of fluids; the ability to analyze the thermodynamics of a simple open or closed engineering system; the ability to analyze and determine the forces governing static fluid; the ability to evaluate the relevant flow parameters for fluid flow in internal engineering systems such as pipes and pumps (velocities, losses, etc.) and external systems such as flow over wings and airfoils (lift and drag). Course content will include concepts of heat and work, properties of substances, first law of thermodynamics, control mass and control volume analysis, thermal efficiency, entropy, second law of thermodynamics, reversible and irreversible processes, isentropic efficiency, power and refrigeration cycles; basic concepts of pressure, force, acceleration, continuity, streamline and stream function, viscosity, non-dimensional parameters; Fluid statics: governing hydrostatic equations, buoyancy; Fluid dynamics: governing conservation equations; Potential flow, vorticity and circulation; Bernouilli and Euler equations; A brief introduction to flow measuring devices, pipe flow, flow over surfaces, lift and drag.
AMME5301 Foundations of Mechanics of Solids 1

Credit points: 6 Session: Semester 2 Classes: Lectures: 3 hours per week; Tutorials: 2 hours per week Assumed knowledge: Physics, statics, Differential Calculus, Linear Algebra, Integral Calculus and Modelling. Assessment: Through semester assessment (35%), Final Exam (65%) Campus: Camperdown/Darlington Mode of delivery: Normal (lecture/lab/tutorial) Day Associated degrees: Grad Dip E (Prof Eng), M P E. Faculty: Engineering and Information Technologies
This unit aims to teach the fundamentals of analysing stress and deformation in elemental structures/components in aerospace, mechanical and biomedical engineering (bars, beams, frames, cell box beams and tubes) under simple and combined loading of tension, compression, bending and torsion. The vibration will also be addressed. At the end of this unit students will have gained knowledge of: equilibrium of deformable structures; basic concept of deformation compatibility; stress and strain in bars, beams and their structures subjected to tension, compression, bending, torsion and combined loading; statically determinate and indeterminate structures; energy methods for bar and beam structures; simple buckling; simple vibration; deformation of simple frames and cell box beams; simple two-dimensional stress and Mohr's circle; problem-based applications in aerospace, mechanical and biomedical engineering.
AMME5901 Anatomy and Physiology for Engineers

Credit points: 6 Session: Semester 2 Classes: Lectures: 2.5 hours per week; Laboratory: 2 hours per week. Assumed knowledge: Biology Assessment: Through semester assessment (40%), Final Exam (60%) Campus: Cumberland Mode of delivery: Normal (lecture/lab/tutorial) Day Associated degrees: Grad Dip E (Prof Eng), M P E. Faculty: Engineering and Information Technologies
This unit aims for students to gain familiarity with anatomical and physiological terms and understanding their meaning. Students should gain an understanding of the gross anatomy of the major systems in the human body and their importance in the design of biomedical devices. Students should gain an understanding of the major physiological principles which govern the operation of the human body. At the end of this unit students will be able to: identify the gross anatomical features of the human body; describe the normal function of the major body systems (nervous, circulatory, respiratory, musculoskeletal, digestive and renal); determine how these functions relate to cellular function; determine how a biomedical engineering device affects the normal anatomy and function of the body. Course content will include: Bone tissue; Skeletal system; Joints; Muscle Tissue; Bones & joints anatomy (prac); Muscle Mechanics; Muscle anatomy (prac); Nerve Tissue; Muscles & nerves prac; CVS Heart; Blood vessels; Respiratory System 1; Respiratory System 2; Homeostasis; CVS and Respiratory anatomy (prac); Physiology; Respiratory Physiology; Cardio-respiratory physiology (prac); Renal Anatomy; Renal Physiology; Abdominal Renal Digestive Anatomy; Digestive Physiology; Oral Presentation.
MECH5400 Foundations of Mechanical Design 1

Credit points: 6 Session: Semester 2 Classes: 2 hours of lectures, 2 hours of tutorials and 1 hour of computer lab per week Prohibitions: MECH2400 Assumed knowledge: Knowledge of programming in MATLAB and a knowledge of Engineering Mechanics (statics) Assessment: Through semester assessment (100%) Campus: Camperdown/Darlington Mode of delivery: Normal (lecture/lab/tutorial) Day Associated degrees: Grad Dip E (Prof Eng), M P E. Faculty: Engineering and Information Technologies
For students to experience the design process and to develop good engineering skills.
Course Objectives: To develop an understanding of:
1. the need for and use of standard drawings in the communication and definition of parts and assemblies,
2. the efficient use of a CAD package
3. creativity,
4. the design process,
5. methods used to analyse designs.
6. Standard components

Year Two - Semester One

AMME5501 Foundations: System Dynamics and Control

Credit points: 6 Session: Semester 1 Classes: Lectures : 2 hours per week; Tutorials : 3 hours per week Assumed knowledge: AMME5500 Assessment: Through semester assessment (40%), Final Exam (60%) Campus: Camperdown/Darlington Mode of delivery: Normal (lecture/lab/tutorial) Day Associated degrees: M P E. Faculty: Engineering and Information Technologies
This unit of study aims to allow students to develop an understanding of methods for modeling and controlling linear, time-invariant systems. Techniques examined will include the use of differential equations and frequency domain approaches to modeling of systems. This will allow students to examine the response of a system to changing inputs and to examine the influence of external stimuli such as disturbances on system behaviour. Students will also gain an understanding of how the responses of these mechanical systems can be altered to meet desired specifications and why this is important in many engineering problem domains. The study of control systems engineering is of fundamental importance to most engineering disciplines, including Electrical, Mechanical, Mechatronic and Aerospace Engineering. Control systems are found in a broad range of applications within these disciplines, from aircraft and spacecraft to robots, automobiles, computers and process control systems. The concepts taught in this course introduce students to the mathematical foundations behind the modelling and control of linear, time-invariant dynamic systems.
In particular, topics addressed in this course will include:
1. Techniques for modelling mechanical systems and understanding their response to control inputs and disturbances. This will include the use of differential equations and frequency domain methods as well as tools such as Root Locus and Bode plots.
2. Representation of systems in a feedback control system as well as techniques for determining what desired system performance specifications are achievable, practical and important when the system is under control
3. Theoretical and practical techniques that help engineers in designing control systems, and an examination of which technique is best in solving a given problem.
MECH5261 Foundations of Fluid Mechanics

Credit points: 6 Session: Semester 1 Classes: 2 hours of lectures and 2 hours of tutorials per week. Prohibitions: MECH3261 Assumed knowledge: Linear Mathematics, Vector Calculus, Differential Equations and Fourier Series; Thermo Fluids fundamentals Assessment: Through semester assessment(60%), Final Exam (40%) Campus: Camperdown/Darlington Mode of delivery: Normal (lecture/lab/tutorial) Day Associated degrees: Grad Dip E (Prof Eng), M P E. Faculty: Engineering and Information Technologies
Note: Department permission required for enrolment
This unit aims to provide students with a detailed understanding of the theory and practice of fluid mechanics in the context of mechanical engineering. At the end of this unit students will have the ability to critically assess and solve problems commonly found in fluid mechanics practice, such as sizing pumps and piping systems, designing channels, and determining the lift and drag characteristics of submerged bodies. Additionally, they will develop a structured and systematic approach to problem solving. Course content will include dimensionless analysis, Bernoulli equation, pipe flow, frictional losses, laminar and turbulent boundary layers, open channel flow and hydraulic jump, lift and drag, compressible flow and shock waves, turbomachinery .
MECH5362 Foundations of Materials 2

Credit points: 6 Session: Semester 1 Classes: 3 hours of lectures and 2 hours of tutorials per week. Prerequisites: AMME5302 Prohibitions: MECH3362 Assumed knowledge: Mechanics of solids: statics, stress, strain Assessment: Through semester assessment (50%) , Final Exam (50%). Campus: Camperdown/Darlington Mode of delivery: Normal (lecture/lab/tutorial) Day Associated degrees: M P E. Faculty: Engineering and Information Technologies
This unit aims for students to understand the relationship between properties of materials and their microstructures and to improve mechanical design based on knowledge of mechanics and properties of materials.
At the end of this unit students should have the capability to select proper materials for simple engineering design.
Course content will include: short-term and long-term mechanical properties; introductory fracture and fatigue mechanics, dislocations; polymers and polymer composite materials; ceramics and glasses; structure-property relationships; selection of materials in mechanical design.
MECH5660 Foundations of Manufacturing Engineering

Credit points: 6 Session: Semester 1 Classes: 2 hours of lectures and 2 hours of tutorials per week. Prerequisites: MECH5400 Assessment: Through semester assessment (100%) Campus: Camperdown/Darlington Mode of delivery: Normal (lecture/lab/tutorial) Day Associated degrees: M P E. Faculty: Engineering and Information Technologies
The unit aims to teach the fundamentals of manufacturing processes and systems in mechanical, mechatronic and biomedical engineering, including traditional and advanced manufacturing technologies.
This unit aims to develop the following attributes: to understand the fundamental principles of manufacturing technologies for the above mentioned engineering areas; to gain the ability to select existing manufacturing processes and systems for direct engineering applications; to develop ability to create innovative new manufacturing technologies for advanced industrial applications; to develop ability to invent new manufacturing systems
At the end of this unit students will have a good understanding of the following: merits and advantages of individual manufacturing processes and systems; principles of developing new technologies; comprehensive applications and strategic selection of manufacturing processes and systems.
Course content will include:
Manufacturing Processes: Common processes and their science (machining, casting, powder metallurgy, metal working, welding); merits and limitations; CNC and CAM;
Manufacturing Systems: Economics in manufacturing; flexible manufacturing; group technology; materials selection and requirements planning; quality control; introduction to new technology; introduction to e-manufacturing; human factors; plant layout.

Year Two - Semester Two

AMME5921 Biomedical Engineering Tech 2

Credit points: 6 Session: Semester 2 Classes: Lectures: 4 hours per week Assumed knowledge: This is an introductory Masters of Engineering unit. A bachelors degree, ideally in the engineering or science field, is advisory, but not essential. Assessment: Through semester assessment (100%) Campus: Camperdown/Darlington Mode of delivery: Normal (lecture/lab/tutorial) Day Associated degrees: M E, M P E. Faculty: Engineering and Information Technologies
This unit of study provides an introduction to the field of biomedical engineering, from the point of view of the engineering and the global biomedical industry itself. After completion of this unit, students will have a clear understanding of what biomedical engineering is, both from the engineering perspective and the commercial/industry perspective.
AMME5971 Applied Tissue Engineering

Credit points: 6 Session: Semester 1 Classes: Lectures: 2 hours per week; Tutorials: 2 hours per week Assumed knowledge: 6 credit points of junior biology,6 credit points of junior chemistry and 6 credit points of intermediate physiology or equivalent. Assessment: Through semester assessment (60%), Final Exam (40%) Campus: Camperdown/Darlington Mode of delivery: Normal (lecture/lab/tutorial) Day Associated degrees: M E, M P E. Faculty: Engineering and Information Technologies
Elective Unit of Study: With the severe worldwide shortage of donor organs and the ubiquitous problem of donor organ rejection, there is a strong need for developing technologies for engineering replacement organs and other body parts. Recent developments in biochemistry and cell biology have begun to make this possible, and as a consequence, the very new field of tissue engineering has been making dramatic progress in the last few years.
This UoS will provide an introduction to the principles of tissue engineering, as well as an up to date overview of recent progress in the field of tissue engineering is and where it is going. This UoS assumes prior knowledge of cell biology and chemistry and builds on that foundation to elaborate on the important aspects of tissue engineering. The objectives are:
1. To gain a basic understanding of the major areas of interest in tissue engineering
2. To learn to apply basic engineering principles to tissue engineering systems
3. To understand the challenges and difficulties of tissue engineering.
4. Understand the ethical issues of stem cell applications.
5. Practical classes in the preparation and evaluation of scaffolds for tissue regeneration.
6. Enable student to access web-based resources in tissue engineering (for example: Harvard-MIT Principles and Practice of Tissue Engineering).
7. Research basic skills in Tissue Engineering.
ENGG5214 Management of Technology

Credit points: 6 Session: Semester 2,Winter Main Classes: 1 hr Lecture per week, 1 hr Tutorial per week, 2hr Project work in class per week. Assumed knowledge: Sound competence in all aspects of engineering, and some understanding of issues of engineering management Assessment: Through semester assessment (100%) Campus: Camperdown/Darlington Mode of delivery: Normal (lecture/lab/tutorial) Day Associated degrees: Grad Dip E, M P E. Faculty: Engineering and Information Technologies
This UoS is designed to introduce students to the global context of much of contemporary engineering and the consequent strategic and operational issues. It will address the nature, characteristics and variety of risks of global businesses, the opportunities and pressures for effective strategies, and the many management challenges in international business. In particular it will focus on Australian consulting, logistics and construction engineering firms that are operating on a global basis.
MECH5361 Foundations of Mechanics of Solids 2

Credit points: 6 Session: Semester 2 Classes: 3 hours of lectures and 2 hours of tutorials per week Prerequisites: AMME5301 Prohibitions: MECH3361 Assumed knowledge: Linear Mathematics, Vector Calculus, Differential Equations and Fourier Series Assessment: Through semester assessment(70%), Final Exam (30%) Campus: Camperdown/Darlington Mode of delivery: Normal (lecture/lab/tutorial) Day Associated degrees: M P E. Faculty: Engineering and Information Technologies
The UoS aims to: teach the fundamentals of analysing stress and deformation in a solid under complex loading associated with the elemental structures/components in aerospace, mechanical and biomedical engineering; develop the following attributes: understand the fundamental principles of solid mechanics and basic methods for stress and deformation analysis of a solid structure/element in the above mentioned engineering areas; gain the ability to analyse problems in terms of strength and deformation in relation to the design, manufacturing and maintenance of machines, structures, devices and elements in the above mentioned engineering areas.
At the end of this unit students will have a good understanding of the following: applicability of the theories and why so; how and why to do stress analysis; why we need equations of motion/equilibrium; how and why to do strain analysis; why we need compatibility equations; why Hooke`s law, why plasticity and how to do elastic and plastic analysis; how and why to do mechanics modelling; how to describe boundary conditions for complex engineering problems; why and how to solve a mechanics model based on a practical problem; why and how to use energy methods for stress and deformation analysis; why and how to do stress concentration analysis and its relation to fracture and service life of a component/structure; how and why to do fundamental plastic deformation analysis; how and why the finite element method is introduced and used for stress and deformation analysis.
The students are expected to develop the ability of solving engineering problems by comprehensively using the skills attained above. The students will get familiar with finite element analysis as a research and analysis tool for various real-life problems.

Year Three - Semester One

AMME5981 Computational Biomedical Engineering

Credit points: 6 Session: Semester 1 Classes: Lectures: 2 hours per week; Tutorials: 2 hours per week Assumed knowledge: AMME5301 and AMME5302 and AMME5500 and MECH5361 and MECH3921 Assessment: Through semester assessment (100%) Campus: Camperdown/Darlington Mode of delivery: Normal (lecture/lab/tutorial) Day Associated degrees: B E, M E, M P E. Faculty: Engineering and Information Technologies
This UoS will give students a comprehensive understanding of finite element method, material constitutive modelling, CT/MRI based solid modelling, design analysis and optimisation, and their applications in biomedical engineering. The students are expected to expand their research and development skills in relevant topics, and gain experience and skills in finite element software for the solution to sophisticated problems associated with biomedical engineering.
The objectives are:
1. Understanding of the nature of biomedical engineering problems;
2. Exploring CT/MRI image processing, solid modelling etc;
3. Understanding of finite element methods and developing FE models for biomedical engineering analysis;
4. Understanding biomaterials constitutive modelling;
5. Understanding bone remodelling simulation, fracture mechanics;
6. Developing prosthetic design optimisation;
AMME5990 Biomedical Engineering Tech 1

Credit points: 6 Session: Semester 1 Classes: Lectures: 2 hours per week; Tutorials: 2 hours per week Assumed knowledge: Junior level chemistry, intermediate level biology, and specific knowledge of cell biology at least at the junior level, and preferably at the intermediate level. Assessment: Through semester assessment (100%) Campus: Camperdown/Darlington Mode of delivery: Normal (lecture/lab/tutorial) Day Associated degrees: M E, M P E. Faculty: Engineering and Information Technologies
Elective Unit of Study: Product development in the biomedical area presents unique challenges that need to be addressed to efficiently satisfy strict regulatory requirements and to successfully advance products to approval for marketing. Biomedical engineers need a broad understanding of these challenges as the main components of product development are complex and interdependent. Development of good manufacturing and quality control processes, preclinical and clinical validation of product safety and efficacy, and regulatory filings, are each progressive and interdependent processes. This UoS will provide a broad understanding of regulatory requirements for biomedical product development, with particular emphasis on the dependence of each component on the development of processes and control systems that conform to Good Manufacturing Practice. This UoS assumes prior knowledge of cell biology and chemistry and builds on that foundation to elaborate on the important aspects of biomedical product development.
The objectives are:
1. To gain a broad understanding of biomedical product development within the regulatory framework.
2. To understand the challenges and difficulties of Good Manufacturing Practice.
3. Understand the purpose and conduct of preclinical and clinical testing.
4. To understand how each of these components fit together to support regulatory filings.
ENGG5217 Practical Experience

Session: Semester 1,Semester 2 Classes: no formal classes Assessment: Students will write reports on their industrial experiences and maintain a portfolio of work. Portfolio (100%) Campus: Camperdown/Darlington Mode of delivery: Professional Practice Associated degrees: M P E. Faculty: Engineering and Information Technologies
Note: Students should have completed one year of their MPE program before enrolling in this unit.
The 3 year MPE requires students to obtain industrial work experience of twelve weeks duration (60 working days) or its equivalent towards satisfying the requirements for award of the degree. Students can undertake their work experience in the final year of the MPE program (Year 3). Students may have prior work in an Engineering field carried out on completion of their undergraduate degree accepted as meeting the requirements of this component.
Students must be exposed to professional engineering practice to enable them to develop an engineering approach and ethos, and to gain an appreciation of engineering ethics. and to gain an appreciation of engineering ethics.
The student is required to inform the Faculty of any work arrangements by emailing the Graduate School of Engineering and Information Technologies. Assessment in this unit is by the submission of a portfolio containing written reports on the involvement with industry. For details of the reporting requirements, go to the faculty's Practical Experience portfolio web site http://sydney.edu.au/engineering/practical-experience/index.shtml
AMME5020 Capstone Project A

Credit points: 6 Session: Semester 1,Semester 2 Classes: Independent project work. Prerequisites: 48 cp from MPE degree program or 24 cp from the ME program. Assessment: Through semester assessment (100%) Campus: Camperdown/Darlington Mode of delivery: Supervision Associated degrees: M E, M P E. Faculty: Engineering and Information Technologies
Note: Department permission required for enrolment
The capstone project aims to provide students with the opportunity to carry out a defined piece of independent research in a setting and in a manner that fosters the development of engineering research skills. These skills include the capacity to define a research question, showing how it relates to existing knowledge, identifying the tools needed to investigate the question, carrying out the research in a systematic way, analysing the results obtained and presenting the outcomes in a report that is clear, coherent and logically structured. Capstone project is undertaken across two semesters of enrolment, in two successive Units of Study of 6 credits points each. Capstone Project A covers first steps of thesis research starting with development of research proposal. Project B covers the second of stage writing up and presenting the research results.
Students are asked to write a thesis based on a research project, which is very often related to some aspect of a staff member's research interests. Some projects will be experimental in nature, others may involve computer-based simulation, feasibility studies or the design, construction and testing of equipment. Direction of thesis work may be determined by the supervisor or be of an original nature, but in either case the student is responsible for the execution of the practical work and the general layout and content of the thesis itself. The final thesis must be the student's individual work, although research is sometimes conducted in the framework of a group project shared with others. Students undertaking research on this basis will need to take care in ensuring the individual quality of their own research work and the final thesis submission. The thesis will be judged on the extent and quality of the student's original work and particularly how critical, perceptive and constructive he or she has been in assessing his/her work and that of others. Students will also be required to present the results of their findings to their peers and supervisors as part of a seminar program.

It is not expected that a thesis at this level will represent a significant contribution to new knowledge; nor is it expected that theses will resolve great intellectual problems. The timeframe available for the thesis is simply too short to permit students to tackle complex or difficult problems. Indeed, a key aim of the thesis is to specify a research topic that arouses sufficient intellectual curiosity, and presents an appropriate range and diversity of technical and conceptual challenges, while remaining manageable and allowing achievable outcomes within the time and resources available. It is important that the topic be of sufficient scope and complexity to allow a student to learn their craft and demonstrate their research skills. Equally imperative is that the task not be so demanding as to elude completion.
Candidates achieving an average mark of 70% or higher over 48 credit points of units of study in the Year Two Table or equivalent are eligible for the Extended Capstone Project. See Project units.
Candidates achieving an average mark of 75% or higher over 48 credit points of units of study in the Year Two Table or equivalent are eligible for the Research pathway and may replace AMME5020 and 6cp of recommended electives with AMME5222 Dissertation A.
Select 6 credit points from Biomedical recommended electives block.

Year Three - Semester Two

AMME5961 Biomaterials Engineering

Credit points: 6 Session: Semester 2 Classes: Lectures: 3 hours per week Assumed knowledge: Recommended 6 credit points of junior biology 6 credit points of junior chemistry 6 credit points of junior materials science 6 credit points of engineering design Assumed Knowledge: Chemistry, biology, materials engineering, and engineering design at least at the Junior level. Assessment: Through semester assessment (60%), Final Exam (40%) Campus: Camperdown/Darlington Mode of delivery: Normal (lecture/lab/tutorial) Day Associated degrees: M E, M P E. Faculty: Engineering and Information Technologies
To gain a basic understanding of the major areas of interest in the biomaterials field, learn to apply basic engineering principles to biomedical systems, and understand the challenges and difficulties of biomedical systems. To participate in a project-based-learning approach to the topic of design with Biomaterials.
ENGG5103 Safety Systems and Risk Analysis

Credit points: 6 Session: Semester 2 Classes: 2hrs of Lectures per week, 2hrs of Tutorials per week Assessment: Through semester assessment (100%) Campus: Camperdown/Darlington Mode of delivery: Normal (lecture/lab/tutorial) Day Associated degrees: Grad Cert E, M P E. Faculty: Engineering and Information Technologies
To develop an understanding of principles of safety systems management and risk management, as applied to engineering systems. AS/NZS 4801:2001 & 4804:2001 form the foundation for teaching methods of developing, implementing, monitoring and improving a safety management system in an Engineering context.
Students will be exposed to a number of case studies related to safety systems and on completion of the course be able to develop a safety management plan for an Engineering facility that meets the requirements of NSW legislation and Australian standards for Occupational Health and Safety management systems.
Students are introduced to a variety of risk management approaches used by industry, and methods to quantify and estimate the consequences and probabilities of risks occurring, as applied to realistic industrial scenarios.
AMME5021 Capstone Project B

Credit points: 6 Session: Semester 1,Semester 2 Classes: Independent project work. Corequisites: AMME5020 Assessment: Through semester assessment (100%) Campus: Camperdown/Darlington Mode of delivery: Supervision Associated degrees: M E, M P E. Faculty: Engineering and Information Technologies
Note: Department permission required for enrolment
The capstone project aims to provide students with the opportunity to carry out a defined piece of independent research in a setting and in a manner that fosters the development of engineering research skills. These skills include the capacity to define a research question, showing how it relates to existing knowledge, identifying the tools needed to investigate the question, carrying out the research in a systematic way, analysing the results obtained and presenting the outcomes in a report that is clear, coherent and logically structured. Capstone project is undertaken across two semesters of enrolment, in two successive Units of Study of 6 credits points each. Capstone Project A covers first steps of thesis research starting with development of research proposal. Project B covers the second of stage writing up and presenting the research results.
Students are asked to write a thesis based on a research project, which is very often related to some aspect of a staff member's research interests. Some projects will be experimental in nature, others may involve computer-based simulation, feasibility studies or the design, construction and testing of equipment. Direction of thesis work may be determined by the supervisor or be of an original nature, but in either case the student is responsible for the execution of the practical work and the general layout and content of the thesis itself. The final thesis must be the student's individual work, although research is sometimes conducted in the framework of a group project shared with others. Students undertaking research on this basis will need to take care in ensuring the individual quality of their own research work and the final thesis submission. The thesis will be judged on the extent and quality of the student's original work and particularly how critical, perceptive and constructive he or she has been in assessing his/her work and that of others. Students will also be required to present the results of their findings to their peers and supervisors as part of a seminar program.

It is not expected that a thesis at this level will represent a significant contribution to new knowledge; nor is it expected that theses will resolve great intellectual problems. The timeframe available for the thesis is simply too short to permit students to tackle complex or difficult problems. Indeed, a key aim of the thesis is to specify a research topic that arouses sufficient intellectual curiosity, and presents an appropriate range and diversity of technical and conceptual challenges, while remaining manageable and allowing achievable outcomes within the time and resources available. It is important that the topic be of sufficient scope and complexity to allow a student to learn their craft and demonstrate their research skills. Equally imperative is that the task not be so demanding as to elude completion.
Candidates achieving an average mark of 70% or higher over 48 credit points of units of study in the Year Two Table or equivalent are eligible for the Extended Capstone Project. See Project units.
Candidates achieving an average mark of 75% or higher over 48 credit points of units of study in the Year Two Table or equivalent are eligible for the Research pathway and may replace AMME5021 and 6cp of recommended electives with AMME5223 Dissertation B.
Select 6 credit points from Biomedical recommended electives block.

Elective units

Candidates must complete 12 credit points from the following Biomedical elective units.
AERO5010 Optimisation Methods in Engineering

Credit points: 6 Session: Semester 2 Classes: Project work - own time. Assumed knowledge: BE in the area of Aerospace or related Engineering field. Assessment: Through semester assessment (100%) Campus: Camperdown/Darlington Mode of delivery: Normal (lecture/lab/tutorial) Day Associated degrees: Grad Cert E, M P E, PG Coursework Exchange. Faculty: Engineering and Information Technologies
Note: Department permission required for enrolment
The unit is intended primarily to graduate students and senior undergraduate students with some background in linear algebra, and with basic knowledge of FORTRAN, C++ or Matlab. After completion of this unit, students will have a much deeper understanding of methods used in modern design optimisation for linear and non-linear problems. Such problems are becoming increasingly common and important in engineering and scientific work. The unit will explore the limitations, advantages and caveats associated with optimisation in engineering applications. Students will develop their own optimisation methods for linear, non-linear, and multi-objective computational and experimental applications.
AERO5301 Applied Finite Element Analysis

Credit points: 6 Session: Semester 1 Classes: 2.5 hours of lectures and 3 hours of workgroup session per week Prerequisites: AERO5310 OR MECH5361 Assumed knowledge: AMME5301 or BE in area of Aerospace Engineering or related Engineering field. Assessment: Through semester assessment (55%), Final Exam (45%) Campus: Camperdown/Darlington Mode of delivery: Normal (lecture/lab/tutorial) Day Associated degrees: B E, Grad Cert E, M P E. Faculty: Engineering and Information Technologies
The finite element method. Philosophy. Matrix algebra. Matrix analysis of structures. Generalisation of the finite element method in elasticity for static, dynamic and thermal analysis. Rod elements. Beams. Triangular elements for plane stress. Natural coordinate systems. Introduction to plate and shell theory. Theories and analysis in structural stability. Three dimensional elements. Modelling strategies. Isoparametric elements, accuracy and convergence. Applications of finite element modelling in solid mechanics. Practical modelling of real structures will be done; a 'hands-on' approach will be taken.
AMME5202 Advanced Computational Fluid Dynamics

Credit points: 6 Session: Semester 1 Classes: Lectures: 1 hour per week; Tutorials: 1 hour per week; Laboratory Sessions: 2 hours per week Assumed knowledge: Partial differential equations; Finite difference methods;Taylor series; Basic fluid mechanics including pressure, velocity, boundary layers, separated and recirculating flows. Basic computer programming skills. Assessment: Through semester assessment (100%) Campus: Camperdown/Darlington Mode of delivery: Normal (lecture/lab/tutorial) Day Associated degrees: B E, Grad Cert E, M P E, PG Coursework Exchange. Faculty: Engineering and Information Technologies
Objectives: To provide students with the necessary skills to use commercial Computational Fluid Dynamics packages and to carry out research in the area of Computational Fluid Dynamics. Expected outcomes: Students will have a good understanding of the basic theory of Computational Fluid Dynamics, including discretisation, accuracy and stability. They will be capable of writing a simple solver and using a sophisticated commercial CFD package. Syllabus summary: A course of lectures, tutorials and laboratories designed to provide the student with the necessary tools for using a sophisticated commercial CFD package. A set of laboratory tasks will take the student through a series of increasingly complex flow simulations, requiring an understanding of the basic theory of computational fluid dynamics (CFD). The laboratory tasks will be complemented by a series of lectures in which the basic theory is covered, including: governing equations; finite difference methods accuracy and stability for the advection equation, diffusion equation; direct and iterative solution techniques; solution of the full Navier-Stokes equations; turbulent flow; Cartesian tensors; turbulence models.
AMME5271 Computational Nanotechnology

Credit points: 6 Session: Semester 2 Classes: Lectures: 2 hours per week; Tutorials: 3 hours per week Assumed knowledge: Students are required to have an understanding of basic principles of Newtonian mechanics, physics and chemistry, fluid mechanics and solid mechanics. General knowledge of how to operate a computer and work with different software is also required. Assessment: Through semester assessment (100%) Campus: Camperdown/Darlington Mode of delivery: Normal (lecture/lab/tutorial) Day Associated degrees: B E, M E, M P E. Faculty: Engineering and Information Technologies
Note: Department permission required for enrolment
This course introduces atomistic computational techniques used in modern engineering to understand phenomena and predict material properties, behaviour, structure and interactions at nano-scale. The advancement of nanotechnology and manipulation of matter at the molecular level have provided ways for developing new materials with desired properties. The miniaturization at the nanometre scale requires an understanding of material behaviour which could be much different from that of the bulk. Computational nanotechnology plays a growingly important role in understanding mechanical properties at such a small scale. The aim is to demonstrate how atomistic level simulations can be used to predict the properties of matter under various conditions of load, deformation and flow. The course covers areas mainly related to fluid as well as solid properties, whereas, the methodologies learned can be applied to diverse areas in nanotechnology such as, liquid-solid interfaces, surface engineering, nanorheology, nanotribology and biological systems. This is a course with a modern perspective for engineers who wish to keep abreast with advanced computational tools for material characterization at the atomic scale.
AMME5310 Engineering Tribology

Credit points: 6 Session: Semester 1 Classes: 2hrs of Lectures per week, 3hr of Tutorials per week, 12 hours or laboratory work per semester Assumed knowledge: (AMME2302 OR AMME5302) AND (AMME2301 OR AMME5301) AND (MECH3261 OR MECH5261). Assessment: Through semester assessment (100%) Campus: Camperdown/Darlington Mode of delivery: Normal (lecture/lab/tutorial) Day Associated degrees: B E, Grad Cert E, M P E. Faculty: Engineering and Information Technologies
The aim is to teach students in the undergraduate and postgraduate levels basic concepts about friction, lubrication and wear applicable to design and operation of mechanical systems used in engineering, industrial, and modern applications. Examples of these systems are lubrication of internal combustion engines, gearboxes, artificial hip/knee joints, and micro/nano electromechanical systems.
AMME5520 Advanced Control and Optimisation

Credit points: 6 Session: Semester 1 Classes: 2hr lectures per week; 2h tutorial per week Prerequisites: AMME3500 OR AMME5501. Assessment: Through semester assessment (50%), Final exam (50%) Campus: Camperdown/Darlington Mode of delivery: Normal (lecture/lab/tutorial) Day Associated degrees: B E, Grad Cert E, M P E. Faculty: Engineering and Information Technologies
This unit introduces engineering design via optimization, i.e. finding the "best possible" solution to a particular problem. For example, an autonomous vehicle must find the fastest route between two locations over a road network; a biomedical sensing device must compute the most accurate estimate of important physiological parameters from noise-corrupted measurements; a feedback control system must stabilize and control a multivariable dynamical system (such as an aircraft) in an optimal fashion.
The student will learn how to formulate a design in terms of a "cost function", when it is possible to find the "best" design via minimization of this "cost", and how to do so. The course will introduce widely-used optimization frameworks including linear and quadratic programming (LP and QP), dynamic programming (DP), path planning with Dijkstra's algorithm, A*, and probabilistic roadmaps (PRMs), state estimation via Kalman filters, and control via the linear quadratic regulator (LQR) and Model Predictive Control (MPC). There will be constant emphasis on connections to real-world engineering problems in control, robotics, aerospace, biomedical engineering, and manufacturing.
AMME5912 Crash Analysis and Design

Credit points: 6 Session: Semester 1 Classes: Lectures 2 hours per week, Tutorials 2 hours per week. Assumed knowledge: Computer Aided Drafting, Basic FEA principles and Solid Mechanics Assessment: Through semester assessment (100%) Campus: Camperdown/Darlington Mode of delivery: Normal (lecture/lab/tutorial) Day Associated degrees: B E, Grad Cert E, M P E. Faculty: Engineering and Information Technologies
The objective of the course is to give students skills in the area of highly non-linear finite element analysis. Major topics covered include CAD, Implicit / explicit codes, Wire frame geometry, Elemental Theory, Materials, Pre-processing using ETA-PreSys, Contact, LS-Dyna, using NCAC FEM models, Modeling fasteners, Material covered in lectures is reinforced through independent research, assignments, quizzes and a major capstone project. The capstone project involves the development of an approved crash scenario.
AMME5951 Fundamentals of Neuromodulation

Credit points: 6 Session: Semester 1 Classes: 3hrs of lecture/tutorial per week Assumed knowledge: Basic electronics at the junior or intermediate level, junior biology and chemistry, intermediate materials science, anatomy and physiology, senior engineering design practice, and biomedical engineering: Assessment: Through semester assessment (100%) Campus: Camperdown/Darlington Mode of delivery: Normal (lecture/lab/tutorial) Day Associated degrees: B E, Grad Cert E. Faculty: Engineering and Information Technologies
Implantable microelectronic devices functioning either as nerve stimulators or nerve blockers comprise one of the largest markets in the global medical device industry. The aim of this unit of study is to give students a complete overview of the underlying technology (microelectronics, encapsulation biomaterials, electrode biomaterials, electrode-neural interactions, inductive power systems and data links, signal processing) and an expert review of the major technological applications on the market, which include Cochlear implants, pacemakers and implantable defibrillators, deep brain stimulators, pain control nerve blockers, bionic eye implants, functional electrical stimulation systems. The unit will also review emerging applications such as gastrointestinal disorders, obesity; vagal nerve stimulation - epilepsy, depression, carotid artery stimulation hypertension, spinal cord stimulation - ischemic disorders, angina, peripheral vascular disease, incontinence, erectile dysfunction. The unit will conclude with a snapshot of the future: "brain on a chip" progress, nerve regrowth, neurotropins, drug/device combinations. This is a Master of Professional Engineering Unit of Study intended for biomedical engineering students with an interest in working in the medical device industry in the large market sector area of implantable electronic devices.
CHNG5602 Cellular Biophysics

Credit points: 6 Session: Semester 1 Classes: 4 hours of lectures/ project work classes per week. Assessment: Through semester assessment (50%), Final Exam (50%) Campus: Camperdown/Darlington Mode of delivery: Normal (lecture/lab/tutorial) Day Associated degrees: B E, Grad Cert E, M P E. Faculty: Engineering and Information Technologies
Note: Department permission required for enrolment
Students will be given a good background in the physics of biological processes. Students will understand the differences between thermodynamically closed and open systems and its relevance to cells and other biological systems. Students will be provided with an introduction to the thermodynamics of irreversible and evolutionary processes of relevance to biology. Students will be introduced to the statistical mechanics of self assembly and equilibrium structures and its relevance to biology at the molecular level.
ELEC5803 Advanced Bioelectronics

Credit points: 6 Session: Semester 1 Classes: 2hr Lectures per week, 2hr Lab/Tutorial per week Prerequisites: ELEC2104 AND ELEC2602. Familiarity with transistor operations, basic electrical circuits, embedded programming is required. Assumed knowledge: A strong foundation in control, signal processing and electronic devices and circuits is assumed including a knowledge of analogue and digital transistor operation, circuit building blocks such as the differential pair and current mirror, AC circuit analysis, Fourier analysis. Assessment: Through semester assessment (40%), Final Exam (60%) Campus: Camperdown/Darlington Mode of delivery: Normal (lecture/lab/tutorial) Day Associated degrees: B E, Grad Cert E. Faculty: Engineering and Information Technologies
Note: Department permission required for enrolment
This unit will cover advanced topics in the application of electronics and signal processing to physiological monitoring, biosensors, electrical stimulation and medical imaging. Electrical safety and regulations of medical devices in Australia will be introduced. Guest lectures will describe the different needs and requirements in several clinical areas including neonatal care, oncology, cardiology and neurology.
Assumed Knowledge: A strong foundation in control, signal processing and electronic devices and circuits is assumed including a knowledge of analogue and digital transistor operation, circuit building blocks such as the differential pair and current mirror, AC circuit analysis, Fourier analysis.
ENGG5202 Sustainable Design, Eng and Mgt

Credit points: 6 Session: Semester 1 Classes: 2 lectures per week, tutorials 2 hour per week and projects and self assisted learning (4 hours per week) Assumed knowledge: General knowledge in science and calculus and understanding of basic principles of chemistry, physics and mechanics Assessment: Through semester assessment (70%), Final Exam (30%) Campus: Camperdown/Darlington Mode of delivery: Normal (lecture/lab/tutorial) Day Associated degrees: Grad Cert E, M P E. Faculty: Engineering and Information Technologies
The aim of this UoS is to give students an insight and understanding of the environmental and sustainability challenges that Australia and the planet are facing and how these have given rise to the practice of Sustainable Design, Engineering and Management. The objective of this course is to provide a comprehensive overview of the nature and causes of the major environmental problems facing our planet, with a particular focus on energy and water, and how engineering is addressing these challenges.
The course starts with a description of the physical basis of global warming, and proceeds with a discussion of Australia`s energy and water use, an overview of sustainable energy and water technologies and sustainable building design. Topics include the principles of sustainability, sustainable design and social responsibility, sustainable and renewable energy sources, and sustainable use of water. Aspects of designing a sustainable building, technologies that minimise energy and water consumption, consider recycling and reducing waste disposal using advanced design will also be discussed during this course.
MECH5255 Air Conditioning and Refrigeration (Adv)

Credit points: 6 Session: Semester 2 Classes: 2 hours of lectures and 1 hour of tutorials per week. Prerequisites: MECH3260 or MECH5262 Prohibitions: MECH4255 Assumed knowledge: Students are expected to be familiar with the basic laws of thermodynamics, fluid mechanics and heat transfer. Assessment: Through semester assessment(60%), Final Exam (40%) Campus: Camperdown/Darlington Mode of delivery: Normal (lecture/lab/tutorial) Day Associated degrees: B E, Grad Cert E, M P E. Faculty: Engineering and Information Technologies
This unit of study develops an advanced knowledge of air conditioning systems and refrigeration applications. At the completion of this unit students will be able to determine thermal loads on structures and design an air conditioning or refrigeration system with attention to comfort, control, air distribution and energy consumption. Course content will include: applied psychrometrics, air conditioning systems, design principles, comfort in the built environment. cooling load calculations, heating load calculations, introduction and use of computer-based load estimation packages software, air distribution, fans, ducts, air conditioning controls, advanced refrigeration cycles, evaporators, condensers, cooling towers, compressors, pumps, throttling devices, piping, refrigerants, control, refrigeration equipment, simulation of refrigeration systems, food refrigeration and industrial applications; Use of CFD packages as tools to simulate flows in building and to optimise air conditioning design, energy estimation methods and software, energy evaluation and management in the built environment. Use of experimental air conditioning systems to test for thermal balances and compare with simulations.
MECH5275 Advanced Renewable Energy

Credit points: 6 Session: Semester 2 Classes: 2 hours of lectures and 3 hours of tutorials per week. Prerequisites: MECH5262 or MECH3260 Assumed knowledge: The students will require an understanding of the basic principles of fluid mechanics, thermodynamics and heat transfer, and the application of these principles to energy conversion systems. In particular, students should be able to analyse fluid flow in turbomachinery; perform first and second law thermodynamic analysis of energy conversion systems; and perform calculations of radiative, conductive and convective heat transfer. Assessment: Through semester assessment (100%) Campus: Camperdown/Darlington Mode of delivery: Normal (lecture/lab/tutorial) Day Associated degrees: B E, Grad Cert E, M P E. Faculty: Engineering and Information Technologies
This unit aims to develop understanding of the engineering design and analysis of different devices and technologies for generating power from renewable sources including: solar, wind, wave, tidal, ocean thermal, geothermal, hydro-electric, and biofuels; to understand the environmental, operational and economic issues associated with each of these technologies. At the end of this unit students will be able to perform in depth technical analysis of different types of renewable energy generation devices using the principles of fluid mechanics, thermodynamics and heat transfer. Students will be able to describe the environmental, economic and operational issues associated with these devices.
MECH5304 Materials Failure

Credit points: 6 Session: Semester 2 Classes: Lecture 1 hour per week, Tutorial 1 hour per week, Laboratory 3 hours per week. Assumed knowledge: Fundamental knowledge in materials science and engineering: 1) atomic and crystal structures 2) metallurgy 3) structure-property relationship 4) mechanics of engineering materials 5) solid mechanics Assessment: Through semester assessment (100%) Campus: Camperdown/Darlington Mode of delivery: Normal (lecture/lab/tutorial) Day Associated degrees: Engineering PG Non-Degree, Grad Cert E, M P E, PG Coursework Exchange. Faculty: Engineering and Information Technologies
Note: An elective unit of study for the degree of Master of Engineering
Develop advanced knowledge and skills in diagnostic analyses of materials failure using advanced techniques; enhance students' ability in handling complex engineering cases using interdisciplinary technologies; and provide students an opportunity to understand project research.
MECH5310 Advanced Engineering Materials

Credit points: 6 Session: Semester 1 Classes: 2 hours of lectures and 3 hours of tutorials per week. Prohibitions: MECH4310 Assessment: Through semester assessment (100%) Campus: Camperdown/Darlington Mode of delivery: Normal (lecture/lab/tutorial) Day Associated degrees: B E, Grad Cert E, M P E. Faculty: Engineering and Information Technologies
To understand (a) how to define the relationship between properties and microstructures of advanced engineering materials, (b) how to improve mechanical design with the knowledge of mechanics and properties of materials, and (c) how to conduct failure diagnosis of engineering materials.
MECH5416 Advanced Design and Analysis

Credit points: 6 Session: Semester 1 Classes: 2 hrs of lectures, 2hrs of tutorial per week. Assumed knowledge: Eng Mechanics, balance of forces and moments Mechanics of Solids, 2 and 3 dimensional stress and strain Engineering Dynamics - dynamic forces and moments. Mechanical Design, approach to design problems and report writing, and preparation of engineering drawing Mechanical design intermediate, means of applying fatigue analysis to a wide range of machine components Assessment: Through semester assessment (100%) Campus: Camperdown/Darlington Mode of delivery: Normal (lecture/lab/tutorial) Day Associated degrees: B E, Grad Cert E, M P E. Faculty: Engineering and Information Technologies
This UoS utilises assumed theoretical knowledge and skills to elucidate the stresses and strains that exit in the different categories of machine parts. It sets out to make the students familiar with the simplifications that are applied to arrive at the analytic expressions commonly used to analyse each individual categories parts. These simplifications usually begin by assuming that only particular types of loads are carried by teh parts in that category. The resulting analyses provide approximations to the actual stresses. It is possible to have different degrees of simplifications, requiring more or less work, giving better or poorer approximations. Should a part be used to carry loads that were not allowed for in the traditional method then some more appropriate method must be found or developed. An important aspect is to make the student
practiced in a range of modern concepts, techniques and tools, and to be made aware of their strengths and limitations.
This UoS teaches the student how to recognise where and how their theoretical skills can be applied to the practical situations that they may encounter in this field of design.
Options may be provided in the choice of design assignments. Biomedical engineering and vehicle design problems may be provided as options to more general machine design problems.
MECH5720 Sensors and Signals

Credit points: 6 Session: Semester 2 Classes: 3 hours of lectures and 2 hours of tutorials per week Prohibitions: MECH4720 Assumed knowledge: Strong MATLAB skills Assessment: Through semester assessment (70%), Final Exam (30%) Campus: Camperdown/Darlington Mode of delivery: Normal (lecture/lab/tutorial) Day Associated degrees: B E, Grad Cert E, M P E. Faculty: Engineering and Information Technologies
Syllabus Summary: This course starts by providing a background to the signals and transforms required to understand modern sensors. It goes on to provide an overview of the workings of typical active sensors (Radar, Lidar and Sonar). It provides insight into basic sensing methods as well as aspects of interfacing and signal processing. It includes both background material and a number of case studies.
The course covers the following topics:
a) SIGNALS: Convolution, The Fourier Transform, Modulation (FM, AM, FSK, PSK etc), Frequency shifting (mixing)
b) PASSIVE SENSORS: Infrared Radiometers, Imaging Infrared, Passive Microwave Imaging, Visible Imaging & Image Intensifiers
c) ACTIVE SENSORS THE BASICS: Operational Principles, Time of flight (TOF) Measurement & Imaging of Radar, Lidar and Sonar, Radio Tags and Transponders, Range Tacking, Doppler Measurement, Phase Measurement
d) SENSORS AND THE ENVIRONMENT: Atmospheric Effects, Target Characteristics, Clutter Characteristics, Multipath
e) ACTIVE SENSORS: ADVANCED TECHNIQUES: Probability of Detection, Angle Measurement and Tracking, Combined Range/Doppler and Angle Tracking, Frequency Modulation and the Fast Fourier Transform, High Range Resolution, Wide Aperture Methods, Synthetic Aperture Methods (SAR)
Objectives: The course aims to provide students with a good practical knowledge of a broad range of sensor technologies, operational principles and relevant signal processing techniques.
Expected Outcomes: A good understanding of active sensors, their outputs and applicable signal processing techniques. An appreciation of the basic sensors that are available to engineers and when they should be used.
MTRX5700 Experimental Robotics

Credit points: 6 Session: Semester 1 Classes: 2hrs lectures and 3hrs of laborarory work per week Prohibitions: MTRX4700 Assumed knowledge: Knowledge of statics and dynamics, rotation matrices, programming and some electronic and mechanical design experience is assumed. Assessment: Through semester assessment (70%), Final Exam (30%). Campus: Camperdown/Darlington Mode of delivery: Normal (lecture/lab/tutorial) Day Associated degrees: B E, Grad Cert E, M P E. Faculty: Engineering and Information Technologies
This unit aims to present a broad overview of the technologies associated with industrial and mobile robots. Major topics covered are sensing, mapping, navigation and control of mobile robots and kinematics and control of industrial robots. The subject consists of a series of lectures on robot fundamentals and case studies on practical robot systems. Material covered in lectures is illustrated through experimental laboratory assignments. The objective of the course is to provide students with the essential skills necessary to be able to develop robotic systems for practical applications.
At the end of this unit students will: be familiar with sensor technologies relevant to robotic systems; understand conventions used in robot kinematics and dynamics; understand the dynamics of mobile robotic systems and how they are modeled; have implemented navigation, sensing and control algorithms on a practical robotic system; apply a systematic approach to the design process for robotic systems; understand the practical application of robotic systems in applications such as manufacturing, automobile systems and assembly systems; develop the capacity to think creatively and independently about new design problems; undertake independent research and analysis and to think creatively about engineering problems.
Course content will include: history and philosophy of robotics; hardware components and subsystems; robot kinematics and dynamics; sensors, measurements and perception; robotic architectures, multiple robot systems; localization, navigation and obstacle avoidance, robot planning; robot learning; robot vision and vision processing.

Project units

All candidates are required to complete a minimum of 12 credit points of Project units.
Candidates achieving an average mark of 70% or higher over 48 credit points of units of study in the Year Two Table or equivalent are eligible for the Extended Capstone Project.
Extended Capstone Project candidates take Capstone Project units AMME5020 and AMME5022 (total 18 cp) in place of Capstone Project AMME5021 and 6 cp of elective units.
AMME5020 Capstone Project A

Credit points: 6 Session: Semester 1,Semester 2 Classes: Independent project work. Prerequisites: 48 cp from MPE degree program or 24 cp from the ME program. Assessment: Through semester assessment (100%) Campus: Camperdown/Darlington Mode of delivery: Supervision Associated degrees: M E, M P E. Faculty: Engineering and Information Technologies
Note: Department permission required for enrolment
The capstone project aims to provide students with the opportunity to carry out a defined piece of independent research in a setting and in a manner that fosters the development of engineering research skills. These skills include the capacity to define a research question, showing how it relates to existing knowledge, identifying the tools needed to investigate the question, carrying out the research in a systematic way, analysing the results obtained and presenting the outcomes in a report that is clear, coherent and logically structured. Capstone project is undertaken across two semesters of enrolment, in two successive Units of Study of 6 credits points each. Capstone Project A covers first steps of thesis research starting with development of research proposal. Project B covers the second of stage writing up and presenting the research results.
Students are asked to write a thesis based on a research project, which is very often related to some aspect of a staff member's research interests. Some projects will be experimental in nature, others may involve computer-based simulation, feasibility studies or the design, construction and testing of equipment. Direction of thesis work may be determined by the supervisor or be of an original nature, but in either case the student is responsible for the execution of the practical work and the general layout and content of the thesis itself. The final thesis must be the student's individual work, although research is sometimes conducted in the framework of a group project shared with others. Students undertaking research on this basis will need to take care in ensuring the individual quality of their own research work and the final thesis submission. The thesis will be judged on the extent and quality of the student's original work and particularly how critical, perceptive and constructive he or she has been in assessing his/her work and that of others. Students will also be required to present the results of their findings to their peers and supervisors as part of a seminar program.

It is not expected that a thesis at this level will represent a significant contribution to new knowledge; nor is it expected that theses will resolve great intellectual problems. The timeframe available for the thesis is simply too short to permit students to tackle complex or difficult problems. Indeed, a key aim of the thesis is to specify a research topic that arouses sufficient intellectual curiosity, and presents an appropriate range and diversity of technical and conceptual challenges, while remaining manageable and allowing achievable outcomes within the time and resources available. It is important that the topic be of sufficient scope and complexity to allow a student to learn their craft and demonstrate their research skills. Equally imperative is that the task not be so demanding as to elude completion.
AMME5021 Capstone Project B

Credit points: 6 Session: Semester 1,Semester 2 Classes: Independent project work. Corequisites: AMME5020 Assessment: Through semester assessment (100%) Campus: Camperdown/Darlington Mode of delivery: Supervision Associated degrees: M E, M P E. Faculty: Engineering and Information Technologies
Note: Department permission required for enrolment
The capstone project aims to provide students with the opportunity to carry out a defined piece of independent research in a setting and in a manner that fosters the development of engineering research skills. These skills include the capacity to define a research question, showing how it relates to existing knowledge, identifying the tools needed to investigate the question, carrying out the research in a systematic way, analysing the results obtained and presenting the outcomes in a report that is clear, coherent and logically structured. Capstone project is undertaken across two semesters of enrolment, in two successive Units of Study of 6 credits points each. Capstone Project A covers first steps of thesis research starting with development of research proposal. Project B covers the second of stage writing up and presenting the research results.
Students are asked to write a thesis based on a research project, which is very often related to some aspect of a staff member's research interests. Some projects will be experimental in nature, others may involve computer-based simulation, feasibility studies or the design, construction and testing of equipment. Direction of thesis work may be determined by the supervisor or be of an original nature, but in either case the student is responsible for the execution of the practical work and the general layout and content of the thesis itself. The final thesis must be the student's individual work, although research is sometimes conducted in the framework of a group project shared with others. Students undertaking research on this basis will need to take care in ensuring the individual quality of their own research work and the final thesis submission. The thesis will be judged on the extent and quality of the student's original work and particularly how critical, perceptive and constructive he or she has been in assessing his/her work and that of others. Students will also be required to present the results of their findings to their peers and supervisors as part of a seminar program.

It is not expected that a thesis at this level will represent a significant contribution to new knowledge; nor is it expected that theses will resolve great intellectual problems. The timeframe available for the thesis is simply too short to permit students to tackle complex or difficult problems. Indeed, a key aim of the thesis is to specify a research topic that arouses sufficient intellectual curiosity, and presents an appropriate range and diversity of technical and conceptual challenges, while remaining manageable and allowing achievable outcomes within the time and resources available. It is important that the topic be of sufficient scope and complexity to allow a student to learn their craft and demonstrate their research skills. Equally imperative is that the task not be so demanding as to elude completion.
AMME5022 Capstone Project B Extended

Credit points: 12 Session: Semester 1,Semester 2 Classes: Self paced research Prerequisites: 42 credit points in the Master of Engineering and WAM >70, or 66 credit points in the Master of Professional Engineering and WAM >70 or exemption Assessment: Through semester assessment (100%) Campus: Camperdown/Darlington Mode of delivery: Supervision Associated degrees: M E, M P E. Faculty: Engineering and Information Technologies
Note: Department permission required for enrolment
The Capstone Project aims to provide students with the opportunity to carry out a defined piece of independent research or design work in a setting and in a manner that fosters the development of engineering skills in research or design. These skills include the capacity to define a research or design question, showing how it relates to existing knowledge, identifying the tools needed to investigate the question, carrying out the research or design in a systematic way, analysing the results obtained and presenting the outcomes in a report that is clear, coherent and logically structured. Capstone Project is undertaken across two semesters of enrolment, in two successive Units of Study of 6 credits points each. Capstone Project A covers first steps of thesis research starting with development of research proposal. Capstone Project B covers the second of stage writing up and presenting the research results, and Capstone Project B exteneded allows the the student to investigate a topic of greater depth and scope.
Students are asked to write a thesis based on a research or major design project, which is very often related to some aspect of a staff member's research interests. Some projects will be experimental in nature, others may involve computer-based simulation, feasibility studies or the design, construction and testing of equipment. Direction of thesis work may be determined by the supervisor or be of an original nature, but in either case the student is responsible for the execution of the practical work and the general layout and content of the thesis itself. The final thesis must be the student's individual work, although research is sometimes conducted in the framework of a group project shared with others. Students undertaking research on this basis will need to take care in ensuring the individual quality of their own research work and the final thesis submission. The thesis will be judged on the extent and quality of the student's original work and particularly how critical, perceptive and constructive he or she has been in assessing his/her work and that of others. Students will also be required to present the results of their findings to their peers and supervisors as part of a seminar program.
It is not expected that a thesis at this level will represent a significant contribution to new knowledge; nor is it expected that theses will resolve great intellectual problems. The time frame available for the thesis is simply too short to permit students to tackle complex or difficult problems. Indeed, a key aim of the thesis is to specify a research or design topic that arouses sufficient intellectual curiosity, and presents an appropriate range and diversity of technical and conceptual challenges, while remaining manageable and allowing achievable outcomes within the time and resources available. It is important that the topic be of sufficient scope and complexity to allow a student to learn their craft and demonstrate their research or design skills. Equally imperative is that the task not be so demanding as to elude completion.

Research pathway

Candidates achieving an average mark of 75% or higher over 48 credit points of units of study in the Year Two Table or equivalent are eligible for the Research Pathway.
Research pathway candidates take Dissertation units AMME5222 and AMME5223 (total 24 cp) in place of Capstone Project units and 12 cp of elective units.
AMME5222 Dissertation A

Credit points: 12 Session: Semester 1,Semester 2 Classes: no formal classwork Prohibitions: AMME5020, AMME5021, ENGG5220, ENGG5221 Assessment: Through semester assessment (100%) Campus: Camperdown/Darlington Mode of delivery: Supervision Associated degrees: M E, M P E. Faculty: Engineering and Information Technologies
Note: Department permission required for enrolment
Aim: To complete a substantial research project and successfully analyse a problem, devise appropriate experiments, analyse the results and produce a well-argued, in-depth thesis.
AMME5223 Dissertation B

Credit points: 12 Session: Semester 1,Semester 2 Classes: no formal classes Prohibitions: AMME5020, AMME5021, ENGG5220, ENGG5221 Assessment: Through semester assessment (100%) Campus: Camperdown/Darlington Mode of delivery: Supervision Associated degrees: M E, M P E. Faculty: Engineering and Information Technologies
Note: Department permission required for enrolment
Aim : To complete a substantial research project and successfully analyse a problem, devise appropriate experiments, analyse the results and produce a well-argued, in-depth thesis.

Exchange units

Exchange units require the approval of the Program Director. With approval, up to 12 credit points of Exchange units may taken in place of other units, towards the requirements ofthe degree.
ENGG5231 Engineering Graduate Exchange A

Credit points: 6 Session: Int January,Int July Classes: overseas short-course. Prerequisites: Permission from faculty and school. Assessment: Through semester assessment (100%) Campus: Camperdown/Darlington Mode of delivery: Normal (lecture/lab/tutorial) Day Associated degrees: M E, M Inf Tech, M Inf Tech Man, M P E, M P L, M P M. Faculty: Engineering and Information Technologies
Note: Department permission required for enrolment
The purpose of this unit is to enable students to undertake an overseas learning activity during the university's summer or winter break while completing a Masters degree in either Engineering, Professional Engineering, Information Technologies or Project Management. The learning activity may comprise either a short project under academic or industry supervision or summer or winter school unit of study at an approved overseas institution. The learning activity should demonstrate outcomes and workload equivalent to a 6 credit point Master's level unit in the student's current award program.
Students may enrol in this unit with permission from the school and the Sub-Dean Students for the Faculty of Engineering and Information Technologies.
ENGG5232 Engineering Graduate Exchange B

Credit points: 6 Session: Int January,Int July Classes: overseas short-course Prerequisites: Permission from faculty and school. Assessment: Through semester assessment (100%) Campus: Camperdown/Darlington Mode of delivery: Normal (lecture/lab/tutorial) Day Associated degrees: M E, M Inf Tech, M Inf Tech Man, M P E, M P L, M P M. Faculty: Engineering and Information Technologies
Note: Department permission required for enrolment
The purpose of this unit is to enable students to undertake an overseas learning activity during the university's summer or winter break while completing a Masters degree in either Engineering, Professional Engineering, Information Technologies or Project Management. The learning activity may comprise either a short project under academic or industry supervision or summer or winter school unit of study at an approved overseas institution. The learning activity should demonstrate outcomes and workload equivalent to a 6 credit point Master's level unit in the student's current award program.
Students may enrol in this unit with permission from the school and the Sub-Dean Students for the Faculty of Engineering and Information Technologies.

For more information on units of study visit CUSP.