University of Sydney Handbooks - 2014 Archive

Download full 2014 archive Page archived at: Fri, 04 Apr 2014 13:43:56 +1100

Unit of study descriptions

Master of Professional Engineering (Telecommunications)

To qualify for the award of the Master of Professional Engineering in this specialisation, a candidate must complete 144 credit points, including core and elective units of study as listed below.
Candidates with a Bachelor of Engineering or equivalent in the relevant discipline, and who have reached an acceptable level of academic achievement in their prior degree, may be eligible for a reduction of volume in learning of up to 48 credit points.

Core units

Year One

Year One covers Foundation units only. Candidates with a prior Bachelor of Engineering degree or equivalent in the field related to this specialisation may be exempted from Foundation units.

Year One - Semester One

COMP5212 Software Construction

Credit points: 6 Session: Semester 1 Classes: One 2 hour lecture and one 2 hour tutorial per week. Assumed knowledge: Some prior knowledge of programming is preferred; for students without programming experience, extra assistance is given in the first 6 weeks of the semester. Assessment: Through semester assessments (100%) Campus: Camperdown/Darlington Mode of delivery: Normal (lecture/lab/tutorial) Day Associated degrees: B E, Grad Dip Comp, M I D M, M P E, PG Coursework Exchange. Faculty: Engineering and Information Technologies
Note: Department permission required for enrolment
This is a programming unit of study that is designed to enable students, coming from any background, to learn to program in the C language, with emphasis on the individual producing code that works correctly. as a gentler start to C itself, the unit starts with Python, introducing the same core ideas. Once students have mastered this, we move to C, tackling the same deep ideas in the context of the much more difficult programming in C.
Topics include: coding simple dynamic data structures (linked lists); debugging; use of Unix tools for managing programming activities such as testing; learning from manual entries for standard library functions and Unix commands.
On completion of this unit, students will have acquired programming skills and techniques applicable to the development of software used in areas such as networking, computer engineering, language translation, and operating systems.
ELEC5710 Electrical & Electronic Engi (Fund)

Credit points: 6 Session: Semester 1 Classes: 3hrs lectures/labs/tutorials per week Assumed knowledge: Basic knowledge of differentiation & integration, and HSC Physics Assessment: Through semester assessment (50%), Final Exam (50%) Campus: Camperdown/Darlington Mode of delivery: Normal (lecture/lab/tutorial) Day Associated degrees: M P E. Faculty: Engineering and Information Technologies
This unit of study aims to develop knowledge of the fundamental concepts and building blocks of electrical and electronics circuits. This is a foundation unit in circuit theory. Circuit theory is the electrical engineer's fundamental tool.
The concepts learnt in this unit will be made use of heavily in many units of study (in later years) in the areas of electronics, instrumentation, electrical machines, power systems, communication systems, and signal processing.
Topics: a) Basic electrical and electronic circuit concepts: Circuits, circuit elements, circuit laws, node and mesh analysis, circuit theorems, energy storage, capacitors and inductors, circuits with switches, transient response, sine waves and complex analysis, phasors, impedance, ac power.; b) Project management, teamwork, ethics; c) Safety issues
ELEC5722 Foundations of Digital Systems Design

Credit points: 6 Session: Semester 1 Classes: 2 hours of lectures, 2 hours of tutorials and 3 hours of laboratory work per week. Assumed knowledge: ELEC1601. This unit of study assumes some knowledge of digital data representation and basic computer organisation. Assessment: Through semester assessment (40%), Final Exam (60%) Campus: Camperdown/Darlington Mode of delivery: Normal (lecture/lab/tutorial) Day Associated degrees: Grad Dip E (Prof Eng), M P E. Faculty: Engineering and Information Technologies
The purpose of this unit is to equip the students with the skills to design simple digital logic circuits which comprise modules of larger digital systems. The following topics are covered: logic operations, theorems and Boolean algebra, number operations (binary, hex, integer and floating point), combinational logic analysis and synthesis, sequential logic, registers, counters, bus systems, state machines, simple CAD tools for logic design, and the design of a simple computer.
ENGG5011 Foundation Engineering Studies A

Credit points: 6 Session: Semester 1,Semester 2 Classes: no formal classes. regular meetings with supervisor will be required. Assessment: Through semester assessment (100%) Campus: Camperdown/Darlington Mode of delivery: Supervision Associated degrees: Grad Dip E (Prof Eng), M P E. Faculty: Engineering and Information Technologies
Foundations studies covers content that may be assumed knowledge or prerequisite information for follow-on Master of Professional Engineering units. Completion of assigned project work in prescribed background material by the coordinators of the specialist programs will allow students to meet the entry requirements of the MPE degree.

Year One - Semester Two

ELEC5711 Foundations of Computer Systems

Credit points: 6 Session: Semester 2 Classes: 2hr of Lectures per week, 8 hrs of project work in class per semester. Assumed knowledge: HSC Mathematics extension 1 or 2 Assessment: Through semesteer assessment (59%), Final Exam (41%) Campus: Camperdown/Darlington Mode of delivery: Normal (lecture/lab/tutorial) Day Associated degrees: M P E. Faculty: Engineering and Information Technologies
This unit of study introduces the fundamental digital concepts upon which the design and operation of modern digital computers are based. A prime aim of the unit is to develop a professional view of, and a capacity for inquiry into, the field of computing.
Topics covered include: data representation, basic computer organisation, the CPU, elementary gates and logic, peripheral devices, software organisation, machine language, assembly language, operating systems, data communications and computer networks.
ELEC5720 Foundations Electronic Devs and Circuits

Credit points: 6 Session: Semester 2 Classes: 2 hours of lectures per week, and a 2 hours tutorial and 2 hours lab per fortnight. Prohibitions: ELEC2104 Assumed knowledge: Ohm's Law and Kirchoff's Laws; action of Current and Voltage sources; network analysis and the superposition theorem; Thevenin and Norton equivalent circuits; inductors and capacitors, transient response of RL, RC and RLC circuits; the ability to use power supplies, oscilloscopes, function generators, meters, etc. Assessment: Through semester assessment (40%), Final Exam (60%) Campus: Camperdown/Darlington Mode of delivery: Normal (lecture/lab/tutorial) Day Associated degrees: Grad Dip E (Prof Eng), M P E. Faculty: Engineering and Information Technologies
Modern Electronics has come to be known as microelectronics which refers to the Integrated Circuits (ICs) containing millions of discrete devices. This course introduces some of the basic electronic devices like diodes and different types of transistors. It also aims to introduce students the analysis and design techniques of circuits involving these discrete devices as well as the integrated circuits. Completion of this course is essential to specialize in Electrical, Telecommunication or Computer Engineering stream. The knowledge of ELEC1103 is assumed.
ELEC5721 Foundations of Signals and Systems

Credit points: 6 Session: Semester 2 Classes: 2 hours of lectures, 2 hours lab/tutorial per week and 1 hour of eLearning session per week. Assumed knowledge: Basic knowledge of differentiation & integration, differential equations, and linear algebra. Assessment: Through semester assessment (30%), Final Exam (70%) Campus: Camperdown/Darlington Mode of delivery: Normal (lecture/lab/tutorial) Day Associated degrees: Grad Dip E (Prof Eng), M P E. Faculty: Engineering and Information Technologies
This unit aims to teach some of the basic properties of many engineering signals and systems and the necessary mathematical tools that aid in this process. The particular emphasis is on the time and frequency domain modeling of linear time invariant systems. The concepts learnt in this unit will be heavily used in many units of study (in later years) in the areas of communication, control, power systems and signal processing. A basic knowledge of differentiation and integration, differential equations, and linear algebra is assumed.
ELEC5723 Found: Simulations & Numerical Solutions

Credit points: 6 Session: Semester 2 Classes: Lecture 1 hours per week, Laboratory 3 hours per week. Prohibitions: COSC1001 and COSC1901 Assumed knowledge: ELEC1103. Understanding of the fundamental concepts and building blocks of electrical and electronics circuits and aspects of professional project management, teamwork, and ethics. Assessment: Through semester assesment (25%), Final Exam (75%) Campus: Camperdown/Darlington Mode of delivery: Normal (lecture/lab/tutorial) Day Associated degrees: Grad Dip E, M P E. Faculty: Engineering and Information Technologies
Objectives:
* How to apply the software package Matlab to achieve engineering solutions
* Critical assessment of various computer numerical techniques
* Professional project management, teamwork, ethics
This unit assumes an understanding of the fundamental concepts and building blocks of electrical and electronics circuits. As well as covering the specific topics described in the following paragraphs, it aims to develop skills in professional project management and teamwork and promote an understanding of ethics.
Basic features of Matlab. The Matlab desktop. Interactive use with the command window. Performing arithmetic, using complex numbers and mathematical functions. Writing script and function m-files. Matrix manipulations. Control flow. Two dimensional graphics. Application of Matlab to simple problems from circuit theory, electronics, signals and systems and control. Investigation of the steady state and transient behaviour of LCR circuits. Matlab based numerical solutions applicable to numerical optimization, ordinary differential equations, and data fitting. Introduction to symbolic mathematics in Matlab. Applications, including the derivation of network functions for simple problems in circuit analysis. Introduction to the use of Simulink for system modelling and simulation.

Year Two - Semester One

ELEC5736 Foundations of Digital Signal Processing

Credit points: 6 Session: Semester 1 Classes: 2 hours of lectures and a 2 hours lab/tutorial per week. Assumed knowledge: Specifically the following concepts are assumed knowledge for this unit: familiarity with basic Algebra, Differential and Integral Calculus, continuous linear time-invariant systems and their time and frequency domain representations, Fourier transform, sampling of continuous time signals Assessment: Through semester assessment (43%), Final Exam (57%) Campus: Camperdown/Darlington Mode of delivery: Normal (lecture/lab/tutorial) Day Associated degrees: M P E. Faculty: Engineering and Information Technologies
This unit aims to teach how signals are processed by computers. It describes the key concepts of digital signal processing, including details of various transforms and filter design. Students are expected to implement and test some of these ideas on a digital signal processor (DSP). Completion of the unit will facilitate progression to advanced study in the area and to work in the industrial use of DSP.
The following topics are covered. Review of analog and digital signals. Analog to digital and digital to analog conversion. Some useful digital signals. Difference equations and filtering. Impulse and step response of filters. Convolution representation of filters. The Z-transform. Transfer functions and stability. Discrete time Fourier transform (DTFT) and frequency response of filters. Finite impulse response (FIR) filter design: windowing method. Infinite impulse response (IIR) filter design: Butterworth filters, Chebyshev filters, Elliptic filters and impulse invariant design. Discrete Fourier Transform (DFT): windowing effects. Fast Fourier Transform (FFT): decimation in time algorithm. DSP hardware
ELEC5739 Foundations of Communications

Credit points: 6 Session: Semester 1 Classes: 2 hours of lectures and a 3 hours lab and tutorial per week. Assumed knowledge: Confidence in mathematical operation usually needed to handle telecommunications problems such as Fourier transform, fundamental in signals and systems theory, convolution, and similar techniques. Assessment: Through semester assessment (45%), Final Exam (55%) Campus: Camperdown/Darlington Mode of delivery: Normal (lecture/lab/tutorial) Day Associated degrees: M P E. Faculty: Engineering and Information Technologies
This is an intermediate unit of study in telecommunications following on the general concepts studied in earlier units such as Signal and Systems and leading on to more advanced units such as Digital Communication Systems. Student will learn how to critically design and evaluate digital communication systems including the elements of a digital transmission system, understand the limitations of communications channels, different analog and digital modulation schemes and reasons to use digital techniques instead of analog, and the effect of noise and interference in performance of the digital communication systems. On completion of this unit, studentss will have sufficient knowledge of the physical channel of a telecommunications network to approach the study of higher layers of the network stack.
The following topics are covered. Introduction to communications systems, random signals and stochastic process, components, signals and channels, sampling, quantization, pulse amplitude modulation (PAM), pulse code modulation (PCM), quantization noise, time division multiplexing, delta modulation. Digital communications: baseband signals, digital PAM, eye diagram, equalization, correlative coding, error probabilities in baseband digital transmission, bandpass transmission, digital amplitude shift keying (ASK), frequency shift keying (FSK), phase shift keying (PSK) and quadrature shift keying (QPSK), error probabilities in bandpass digital transmission, a case study of digital communication systems. Introduction to information theory: fundamental limits in communications, channel capacity and channel coding, signal compression.
ELEC5744 Foundations of Digital Comm Systems

Credit points: 6 Session: Semester 1 Classes: 2 hours of lectures and a 2 hours lab/tutorial per week. Assessment: Through semester assessment (45%), Final Exam (55%) Campus: Camperdown/Darlington Mode of delivery: Normal (lecture/lab/tutorial) Day Associated degrees: M P E. Faculty: Engineering and Information Technologies
The lecture starts with an overview of major components of a digital communication system and current technology. Then the following knowledge will be covered: efficient coding/representation of information source, channel coding of information to combat noise and interference, optimal received design, principles of incoherent systems, error probability calculations, solutions to problems caused by transmitting a signal through a bandlimited channel and caused by multipath, and spread spectrum systems. The lecture concludes with a discussion of future directions of digital communication systems.
ENGG5202 Sustainable Design, Eng and Mgt

Credit points: 6 Session: Semester 1 Classes: 2 lectures per week, tutorials 2 hour per week and projects and self assisted learning (4 hours per week) Assumed knowledge: General knowledge in science and calculus and understanding of basic principles of chemistry, physics and mechanics Assessment: Through semester assessment (70%), Final Exam (30%) Campus: Camperdown/Darlington Mode of delivery: Normal (lecture/lab/tutorial) Day Associated degrees: Grad Cert E, M P E. Faculty: Engineering and Information Technologies
The aim of this UoS is to give students an insight and understanding of the environmental and sustainability challenges that Australia and the planet are facing and how these have given rise to the practice of Sustainable Design, Engineering and Management. The objective of this course is to provide a comprehensive overview of the nature and causes of the major environmental problems facing our planet, with a particular focus on energy and water, and how engineering is addressing these challenges.
The course starts with a description of the physical basis of global warming, and proceeds with a discussion of Australia`s energy and water use, an overview of sustainable energy and water technologies and sustainable building design. Topics include the principles of sustainability, sustainable design and social responsibility, sustainable and renewable energy sources, and sustainable use of water. Aspects of designing a sustainable building, technologies that minimise energy and water consumption, consider recycling and reducing waste disposal using advanced design will also be discussed during this course.

Year Two - Semester Two

ELEC5740 Foundations of Data Comm & the Internet

Credit points: 6 Session: Semester 2 Classes: 2 hours of lectures, 2 hours tutorial per week. 2 hours of labs per fortnight. Assessment: Through semester assessment (40%), Final Exam (60%) Campus: Camperdown/Darlington Mode of delivery: Normal (lecture/lab/tutorial) Day Associated degrees: M P E. Faculty: Engineering and Information Technologies
Students undertaking this unit should be familiar with fundamental digital technologies and representations such as bit complement and internal word representation. Students should also have a basic understanding of the physical properties of communication channels, techniques and limitations. Furthermore, students should be able to apply fundamental mathematical skills.
The unit will cover the following specific material: Communication reference models (TCP/IP, ATM and OSI). Circuit switched and packet switched communication. Network node functions and building blocks. LAN, MAN and WAN technologies. ATM systems. Protocols fundamental mechanisms. The TCP/IP core protocols (IP, ICMP, DHCP, ARP, TCP, UDP etc.). Applications and protocols (FTP, Telnet, SMTP, HTTP etc.).
Select 18 credit points from the Specialist Electives unit block.

Year Three - Semester One

ENGG5204 Engineering Professional Practice

Credit points: 6 Session: Semester 1 Classes: Lecture 1 hour per week, Tutorial 1 hour per week, Workgroup 1 hour per week. Assumed knowledge: Competences and experience in engineering obtained during an accepted engineering degree Assessment: Through semester assessment (100%) Campus: Camperdown/Darlington Mode of delivery: Normal (lecture/lab/tutorial) Day Associated degrees: Grad Dip E, M P E. Faculty: Engineering and Information Technologies
his UoS is designed to provide graduate engineers studying for a Master of Professional Engineering degree with an introduction to the professional engineering skills necessary to practice as an engineer.
These include the various elements of engineering practice, an understanding of the role of the engineer in industry, basic knowledge of the law of contracts and legal responsibility, teamwork and leadership skills, an understanding of the professional responsibilities of engineers, competence in verbal communication and presentations and in reading and writing reports, and an understanding of ethical considerations. The material, learning and assessment is tailored for graduates from Australian and overseas universities.
ENGG5217 Practical Experience

Session: Semester 1,Semester 2 Classes: no formal classes Assessment: Students will write reports on their industrial experiences and maintain a portfolio of work. Portfolio (100%) Campus: Camperdown/Darlington Mode of delivery: Professional Practice Associated degrees: M P E. Faculty: Engineering and Information Technologies
Note: Students should have completed one year of their MPE program before enrolling in this unit.
The 3 year MPE requires students to obtain industrial work experience of twelve weeks duration (60 working days) or its equivalent towards satisfying the requirements for award of the degree. Students can undertake their work experience in the final year of the MPE program (Year 3). Students may have prior work in an Engineering field carried out on completion of their undergraduate degree accepted as meeting the requirements of this component.
Students must be exposed to professional engineering practice to enable them to develop an engineering approach and ethos, and to gain an appreciation of engineering ethics. and to gain an appreciation of engineering ethics.
The student is required to inform the Faculty of any work arrangements by emailing the Graduate School of Engineering and Information Technologies. Assessment in this unit is by the submission of a portfolio containing written reports on the involvement with industry. For details of the reporting requirements, go to the faculty's Practical Experience portfolio web site http://sydney.edu.au/engineering/practical-experience/index.shtml
ELEC5020 Capstone Project A

Credit points: 6 Session: Semester 1,Semester 2 Classes: Independent project work. Prerequisites: 48 credits from MPE degree program Assessment: Through semester assessment (100%) Campus: Camperdown/Darlington Mode of delivery: Supervision Associated degrees: M E, M P E. Faculty: Engineering and Information Technologies
Note: Department permission required for enrolment
Students will work individually or in groups on an assigned project for the Semester. The concepts covered depend on the nature of the project, but broadly cover research and inquiry, and information literacy.
Candidates achieving an average mark of 70% or higher over 48 credit points of units of study in the Year Two Table or equivalent are eligible for the Extended Capstone Project. See Project units.
Candidates achieving an average mark of 75% or higher over 48 credit points of units of study in the Year Two Table or equivalent are eligible for the Research Pathway and may replace ELEC5020 and 6cp of recommended electives with ELEC5222 Dissertation A.
Select 6 credit points from the Specialist Electives unit block.
Select 6 credit points from the Management Electives unit block.

Year Three - Semester Two

ELEC5021 Capstone Project B

Credit points: 6 Session: Semester 1,Semester 2 Classes: Independent project work. Corequisites: ELEC5020 Assessment: Through semester assessment (100%) Campus: Camperdown/Darlington Mode of delivery: Supervision Associated degrees: M E, M P E. Faculty: Engineering and Information Technologies
Note: Department permission required for enrolment
Students will work individually or in groups on an assigned project for the Semester. The concepts covered depend on the nature of the project, but broadly cover research and inquiry, and information literacy.
Candidates achieving an average mark of 70% or higher over 48 credit points of units of study in the Year Two Table or equivalent are eligible for the Extended Capstone Project. See Project units.
Candidates achieving an average mark of 75% or higher over 48 credit points of units of study in the Year Two Table or equivalent are eligible for the Research Pathway and may replace ELEC5021 and 6cp of recommended electives with ELEC5223 Dissertation B.
Select 12 credit points from the Specialist Electives unit block.
Select 6 credit points from the Management Electives unit block.

Specialist Elective units

Candidates must complete 36 credit points from the following table of Specialist Elective units of study.
ELEC5101 Antennas and Propagation

Credit points: 6 Session: Semester 2 Classes: 2 hours of lectures and a 3 hours laboratory each week. Assessment: Through semester assessment (40%), Final Exam (60%) Campus: Camperdown/Darlington Mode of delivery: Normal (lecture/lab/tutorial) Day Associated degrees: B E, Grad Cert E, M P E, PG Coursework Exchange. Faculty: Engineering and Information Technologies
The basics of antenna radiation are introduced with emphasis on the important performance characteristics of the radiation field pattern (in 3 dimensions) and feed impedance. The omnidirectional and Hertzian dipole antennas (both hypothetical in practise but robust theoretically) provide the starting point to analyse real antenna operation. Mutual coupling between close antennas and important `ground` imaging effects lead to the design of antenna arrays to increase gain and directivity. Aperture antennas and frequency broadbanding techniques are introduced. Ionospheric propagation is discussed and also the the reception efficiency of receiving antennas which allows consideration of a Transmitter - Receiver `Link budget`. The important `Pocklington` equation for a wire dipole is developed from Maxwell`s equations and leads to the numerical analysis of wire antennas using `Moment` methods. Real world applications are emphasised throughout and are reinforced by the hands on laboratory program which includes design projects.
ELEC5403 Radio Frequency Engineering

Credit points: 6 Session: Semester 1 Classes: 2 hours of lectures and 2 hours lab/tutorial per week. Assumed knowledge: Students will be expected to be familiar with ELEC3404 - Electronic Circuit Design , ELEC3104 - Engineering Electromagnetics and the third year course in Circuit Design: ELEC3105 - Circuit Theory and Design. Assessment: Through semester assessment (30%), Final Exam (70%) Campus: Camperdown/Darlington Mode of delivery: Normal (lecture/lab/tutorial) Day Associated degrees: B E, Grad Cert E, M P E, PG Coursework Exchange. Faculty: Engineering and Information Technologies
This unit of study builds upon earlier work and provides an introduction to radio frequency components and systems used in wireless and satellite communications as well as in other high frequency applications. It assumes some knowledge of: basic circuit analysis; semiconductor device models and behaviour; transistor operation as switches and amplifiers; transistor operation as current sources and current mirrors; differential amplifiers.
The following topics are covered: RF circuit element models, high-frequency effects and biasing in active devices, transmission lines and the Smith Chart, RF system characteristics, RF amplifiers, oscillators, mixers, power amplifiers, microwave measurements.
ELEC5507 Error Control Coding

Credit points: 6 Session: Semester 1 Classes: 2 hours of lectures and a 1 hour tutorial per week. Assumed knowledge: Basic knowledge on digital communications. Fundamental mathematics including probability theory and linear algebra. Assessment: Through semester assessment (50%), Final Exam (50%) Campus: Camperdown/Darlington Mode of delivery: Normal (lecture/lab/tutorial) Day Associated degrees: B E, Grad Cert E, Grad Cert I T, M P E, PG Coursework Exchange. Faculty: Engineering and Information Technologies
This unit deals with the principles of error control coding techniques and their applications in various communication and data storage systems. Its aim is to present the fundamentals of error control coding techniques and develop theoretical and practical skills in the design of error control encoders/decoders. Successful completion of this unit will facilitate progression to advanced study or to work in the fields of telecommunications and computer engineering. It is assumed that the students have some background in communications principles and probability theory.
The following topics are covered. Introduction to error control coding, linear algebra. Linear block codes, cyclic codes, BCH codes, Reed-Solomon codes, burst-error correcting codes, design of codecs for block codes, applications of block codes in communications and digital recording. Convolutional codes, Viterbi algorithm, design of codecs for convolutional codes, applications of convolutional codes in communications, soft decision decoding of block and convolutional codes, trellis coded modulation, block coded modulation, design of codecs for trellis codes, applications of trellis codes in data transmission. Turbo codes and applications to space and mobile communications.
ELEC5508 Wireless Engineering

Credit points: 6 Session: Semester 2 Classes: 2 hours of lectures and a 1 hour tutorial per week. Assumed knowledge: Basic knowledge in probability and statistics, analog and digital communications, error probability calculation in communications channels, and telecommunications network. Assessment: Through semester assessment (30%), Final Exam (70%) Campus: Camperdown/Darlington Mode of delivery: Normal (lecture/lab/tutorial) Day Associated degrees: B C S T (Hons), B E, B I T (Hons), Grad Cert E, Grad Cert I T, M P E, PG Coursework Exchange. Faculty: Engineering and Information Technologies
This unit will introduce the key ideas in modern wireless telecommunications networks. It will address both physical layer issues such as propagation and modulation, plus network layer issues such as capacity, radio resource management and mobility management issues.
The following topics are covered. Mobile radio channel: Multipath fading, diversity, log-normal fading, mean propagation loss, propagation models. Cellular technologies: Cell types, coverage, frequency reuse, spectral efficiency, link budget, power budget, traffic capacity. Omnidirectional and sectorised antennas. Handover, interaction with the fixed network. Microcells and macrocells, Medium access control: Near-far effect and the hidden terminal problem. Multiple access schemes: FDMA, TDMA, CDMA. Aloha and s-Aloha, carrier sense multiple access, reservation-based MAC schemes, polling, spread-aloha multiple access. GSM: System architecture, radio resource management, mobility management, connection management.
Third generation systems: WCDMA and cdma2000. Wireless LANs: IEEE802.11, Hiperlan, Bluetooth. Convergence: GSM evolution to data services via GPRS and EDGE. Issues with TCP over wireless. Mobility management in MobileIP.
ELEC5509 Mobile Networks

Credit points: 6 Session: Semester 1 Classes: 2 hours of lecture and a 2 hours tutorial/project meeting per week. Assumed knowledge: Basically, students need to know the concepts of data communications and mobile communications, which could be gained in one the following units of study: ELEC3505 Communications, ELEC3506 Data Communications and the Internet, or similar units. If you are not sure, please contact the instructor. Assessment: Through semester assessment (40%), Final Exam (60%) Campus: Camperdown/Darlington Mode of delivery: Normal (lecture/lab/tutorial) Day Associated degrees: B C S T (Hons), B E, B I T (Hons), Grad Cert E, Grad Cert I T, M P E, PG Coursework Exchange. Faculty: Engineering and Information Technologies
This unit of study serves as an introduction to communications network research. The unit relies on a solid understanding of data communications and mobile networks. It introduces some of the currently most debated research topics in mobile networking and presents an overview of different technical solutions. Students are expected to critically evaluate these solutions in their context and produce an objective analysis of the advantages/disadvantages of the different research proposals. The general areas covered are wireless Internet, mobility management, quality of service in mobile and IP networks, ad hoc networks, and cellular network architectures. The following topics are covered. Introduction to wireless and mobile Internet. Wireless cellular data networks. Cellular mobile networks. Mobile networks of the future. Quality of service in a mobile environment. Traffic modelling for wireless Internet. Traffic management for wireless Internet. Mobility management in mobile networks. Transport protocols for mobile networks. Internet protocols for mobile networks.
ELEC5510 Satellite Communication Systems

Credit points: 6 Session: Semester 2 Classes: 2 hours of lectures,1 hour tutorial per week. 3 hour site visit during semester. Assumed knowledge: Knowledge of error probabilities, analog and digital modulation techniques and error performance evaluation studied in ELEC3505 Communications and ELEC4505 Digital Communication Systems, is assumed. Assessment: Through semester assessment (30%), Final Exam (70%) Campus: Camperdown/Darlington Mode of delivery: Normal (lecture/lab/tutorial) Day Associated degrees: B E, Grad Cert E, Grad Cert I T, M P E, PG Coursework Exchange. Faculty: Engineering and Information Technologies
Satellite communication systems provide fixed and mobile communication services over very large areas of land, sea and air. This unit presents the fundamental knowledge and skills in the analysis and design of such systems. It introduces students to the broad spectrum of satellite communications and its position in the entire telecommunications network; helps students to develop awareness of the key factors affecting a good satellite communications system and theoretical and practical skills in the design of a satellite communications link.
Topic areas include: satellite communication link design; propagation effects and their impact on satellite performance; satellite antennas; digital modem design, speech codec design; error control for digital satellite links.
ELEC5511 Optical Communication Systems

Credit points: 6 Session: Semester 1 Classes: 2 hours of lectures and 2 hours laboratory/tutorial per week. Assumed knowledge: (ELEC3505 Communications) and (ELEC3405 Communications Electronics and Photonics) or equivalent Assessment: Through semester assessment (25%), Final Exam (75%) Campus: Camperdown/Darlington Mode of delivery: Normal (lecture/lab/tutorial) Day Associated degrees: B E, Grad Cert E, Grad Cert I T, M P E, PG Coursework Exchange. Faculty: Engineering and Information Technologies
This course will provide an understanding of the fundamental principles of optical fibre communication systems. It commences with a description of optical fibre propagation characteristics and transmission properties. We will then consider light sources and the fundamental principles of laser action in semiconductor and other lasers, and also the characteristics of optical transmitters based on semiconductor and electro-optic modulation techniques. The characteristics of optical amplifiers will also be discussed. On the receiver side, the principles of photodetection and optical receiver sensitivity will be discussed. Other aspects such as fibre devices and multiple wavelength division multiplexing techniques will also be discussed. Finally, the complete optical fibre communication system will be studied to enable the design of data transmission optical systems, local area networks and multi-channel optical systems.
ELEC5512 Optical Networks

Credit points: 6 Session: Semester 2 Classes: 2 hours of lectures and 1 hour laboratory/tutorial per week. Assumed knowledge: Knowledge of digital communications, wave propagation, and fundamental optics Assessment: Through semester assessment (25%), Final Exam (75%) Campus: Camperdown/Darlington Mode of delivery: Normal (lecture/lab/tutorial) Day Associated degrees: B E, Grad Cert E, Grad Cert I T, M P E, PG Coursework Exchange. Faculty: Engineering and Information Technologies
This Unit builds upon the fundamentals of optical communication introduced in ELEC3405 (Communications Electronics and Photonics). It focuses on photonic network architectures and protocols, network design, enabling technologies and the drivers for intelligent optical network.
Students will learn how to analyze and design optical networks and optical components.
Introduction, photonic network architectures: point to point, star, ring, mesh; system principles: modulation formats, link budgets, optical signal to noise ratio, dispersion, error rates, optical gain and regeneration; wavelength division multiplexed networks; WDM components: optical filters, gratings, multiplexers, demultiplexers, wavelength routers, optical crossconnects, wavelength converters, WDM transmitters and receivers; Wavelength switched/routed networks, ultra high speed TDM, dispersion managed links, soliton systems; broadcast and distribution networks, multiple access, subcarrier multiplexed lightwave video networks, optical local area and metropolitan area networks; protocols for photonic networks: IP, Gbit Ethernet, SDH/SONET, FDDI, ATM, Fibre Channel.
ELEC5514 Networked Embedded Systems

Credit points: 6 Session: Semester 2 Classes: 2 hours lecture and 2 hours lab per week. Assumed knowledge: ELEC3305, ELEC3506, ELEC3607 and ELEC5508 or equivalent Assessment: Through semester assessment (60%), Final Exam (40%) Campus: Camperdown/Darlington Mode of delivery: Normal (lecture/lab/tutorial) Day Associated degrees: B C S T (Hons), B E, B I T (Hons), Grad Cert E, Grad Cert I T, M P E, PG Coursework Exchange. Faculty: Engineering and Information Technologies
This unit aim to teach the fundamentals concepts associated with:
* Networked Embedded Systems, wireless sensor networks
* Wireless channel propagation and radio power consumption
* Wireless networks, ZigBee, Bluetooth, etc.
* Sensor principle, data fusion, source detection and identification
* Multiple source detection, multiple access communications.
* Network topology, routing, network information theory
* Distributed source channel coding for sensor networks
* Power-aware and energy-aware communication protocols.
* Distributed embedded systems problems such as time synchronization and node localization,
Exposure to several recently developed solutions to address problems in wireless sensor networks and ubiquitous computing giving them a well-rounded view of the state-of the-art in the networked embedded systems field.
Student involvement with projects will expose them to the usage of simulators and/or programming some types of networked embedded systems platforms.
* Ability to identify the main issues and trade-offs in networked embedded systems.
* Understanding of the state-of-the-art solutions in the area
* Based on the above understanding, ability to analyze requirements and devise first-order solutions for particular networked embedded systems problems.
* Familiarization with a simulator platform and real hardware platforms for network embedded systems through the Students involvement in projects.
ELEC5614 Real Time Computing

Credit points: 6 Session: Semester 1 Classes: 2 hours of lectures, 1 hour tutorial per week, 2 hours labs per week. Prohibitions: MECH5701 Assumed knowledge: SOFT2130 Software Construction (or SOFT2004 Software Development Methods 1) and ELEC3607 Embedded Computing (or ELEC2601 Microprocessor Systems) Assessment: Through semester assessment (30%), Final Exam (70%) Campus: Camperdown/Darlington Mode of delivery: Normal (lecture/lab/tutorial) Day Associated degrees: B C S T (Hons), B E, B I T (Hons), Grad Cert E, Grad Cert I T, M P E, PG Coursework Exchange. Faculty: Engineering and Information Technologies
This unit is concerned with the theory and practice of real time computer systems as applied to the design of embedded systems and computer control systems in engineering, manufacturing and automation.
Some background in programming, object oriented design and system architecture is assumed. A prime aim of this unit of study is to develop a capacity for research and inquiry in the field of real-time and embedded systems. Completion of this unit will facilitate progression to advanced study or to work in embedded systems and industrial real-time computer systems.
The following topics are covered. Hard real time and embedded systems, as applied to engineering, manufacturing and automation. Timing and scheduling: periodic vs aperiodic processes, deadlines, rate monotonic, deadline monotonic and earliest deadline scheduling. Management of shared resources. Real-time languages and their features. Real time operating systems. Real time software design. Embedded Systems: overview, signal flow, interfacing. Reliability and fault tolerance in hardware and software. SCADA and DCCS. Some case studies.
ELEC5616 Computer and Network Security

Credit points: 6 Session: Semester 1 Classes: 2 hours of lectures, 1 hour of tutorial and 2 hours labs per week. Assumed knowledge: A programming language, basic maths. Assessment: Through semester assessment (50%), Final Exam (50%) Campus: Camperdown/Darlington Mode of delivery: Normal (lecture/lab/tutorial) Day Associated degrees: B C S T (Hons), B E, B I T (Hons), Grad Cert E, Grad Cert I T, M P E, PG Coursework Exchange. Faculty: Engineering and Information Technologies
This unit examines the basic cryptographic building blocks of security, working through to their applications in authentication, key exchange, secret and public key encryption, digital signatures, protocols and systems. It then considers these applications in the real world, including models for integrity, authentication, electronic cash, viruses, firewalls, electronic voting, risk assessment, secure web browsers and electronic warfare. Practical cryptosystems are analysed with regard to the assumptions with which they were designed, their limitations, failure modes and ultimately why most end up broken.

Management Elective units

Candidates must complete 12 credit points from the following Management Elective units of study.
ENGG5203 Quality Engineering and Management

Credit points: 6 Session: Semester 2 Classes: Presentation 2.00 hours per week, Project Work - in class 2.00 hours per week. Assumed knowledge: First degree in Engineering or a related discipline, Assessment: Through semester assessment (100%) Campus: Camperdown/Darlington Mode of delivery: Normal (lecture/lab/tutorial) Day Associated degrees: Grad Dip E, M P E, M P L, M P M. Faculty: Engineering and Information Technologies
This subject is designed to support Engineers in the implementation of engineering tasks in the workplace, It addresses the use of quality control and management as well as systems assurance processes. It is designed to enable engineers entering practice from other related disciplines or with overseas qualifications to do so in a safe and effective way. The study program will include management of quality in research, design and delivery of engineering works and investigation, as well as of safe work practices and systems assurance.
ENGG5205 Professional Practice in PM

Credit points: 6 Session: Semester 1,Semester 2 Classes: Lecture 3hrs per week, E-Learning 1 hr per week. Assumed knowledge: Basic engineering or science knowledge. At least 2-3 years of work experience preferred. Assessment: Through semester assessment (60%), Final Exam (40%) Campus: Camperdown/Darlington Mode of delivery: Normal (lecture/lab/tutorial) Day Associated degrees: Grad Cert P M, Grad Dip E, M P E. Faculty: Engineering and Information Technologies
Note: This is a core unit for all Master of Professional Engineering students as well as all students pursuing Project Management studies (including Master of Project Management, Graduate Certificate in Project Management and Graduate Diploma in Project Management). No prerequisite or assumed knowledge.
This UoS teaches the fundamental knowledge on the importance, organizational context and professional practice in project management. It serves as an introduction to project management practices for non-PM students. For PM students, this UoS lays the foundation to progress to advanced PM subjects. Although serving as a general introduction unit, the focus has been placed on scope, time, cost, and integration related issues.
Specifically, the UoS aims to
1. introduce students to the institutional, organisational and professional environment for today's project management practitioners as well as typical challenges and issues facing them;
2. demonstrate the importance of project management to engineering and organizations;
3. demonstrate the progression from strategy formulation to execution of the project;
4. provide a set of tools and techniques at different stages of a project's lifecycle with emphasis on scope, time, cost and integration related issues;
5. highlight examples of project success/failures in project management and to take lessons from these;
6. consider the roles of project manager in the organization and management of people;
7. provide a path for students seeking improvements in their project management expertise.
ENGG5214 Management of Technology

Credit points: 6 Session: Semester 2,Winter Main Classes: 1 hr Lecture per week, 1 hr Tutorial per week, 2hr Project work in class per week. Assumed knowledge: Sound competence in all aspects of engineering, and some understanding of issues of engineering management Assessment: Through semester assessment (100%) Campus: Camperdown/Darlington Mode of delivery: Normal (lecture/lab/tutorial) Day Associated degrees: Grad Dip E, M P E. Faculty: Engineering and Information Technologies
This UoS is designed to introduce students to the global context of much of contemporary engineering and the consequent strategic and operational issues. It will address the nature, characteristics and variety of risks of global businesses, the opportunities and pressures for effective strategies, and the many management challenges in international business. In particular it will focus on Australian consulting, logistics and construction engineering firms that are operating on a global basis.
ENGG5215 International Eng Strategy & Operations

Credit points: 6 Session: Semester 2 Classes: Lecture 2 hours per week, Tutorial 2 hours per week, Project Work - in class 2 hours per week. Assumed knowledge: Sound competence in all aspects of engineering, and some understanding of issues of engineering management and globalisation Assessment: Through semester assessment (100%) Campus: Camperdown/Darlington Mode of delivery: Normal (lecture/lab/tutorial) Day Associated degrees: Grad Dip E, M P E. Faculty: Engineering and Information Technologies
This UoS is designed to introduce students to the global context of much of contemporary engineering and the consequent strategic and operational issues. It will address the nature, characteristics and variety of risks of global businesses, the opportunities and pressures for effective strategies, and the many management challenges in international business. In particular it will focus on Australian consulting, logistics and construction engineering firms that are operating on a global basis.
ENGG5216 Management of Engineering Innovation

Credit points: 6 Session: Semester 1 Classes: 1hr Lecture per week, 1 hr Tutorials per week, 2 hr Project work in class per week for first half of semester. Assumed knowledge: Sound competence in all aspects of engineering, and some understanding of issues of engineering management Assessment: Through semester assessmewnt (100%) Campus: Camperdown/Darlington Mode of delivery: Normal (lecture/lab/tutorial) Day Associated degrees: Grad Dip E, M P E. Faculty: Engineering and Information Technologies
This unit is designed as enable students to grapple with the challenges of engaging in, facilitating and managing innovation and technology commercialisation. Key learning outcomes are: developing an understanding of the processes of management, and in particular of innovation, dealing with uncertain and inadequate information, how to communicate effectively to and motivate a group of people to work out what to do, and how to do it. Content will include the challenges of modern management; understanding of the new rules of international competitiveness; effects of globalisation on Australia's economic performance; the competitiveness of Australian firms; the generation of employment and wealth; the changing requirements of the engineer; the engineer as manager and strategist; the role of innovation in business management; product innovation and commercialisation; IP recognition and management; starting a high-tech company.

Project units

All candidates are required to complete a minimum of 12 credit points of Project units.
Candidates achieving an average mark of 70% or higher over 48 credit points of units of study in the Year Two Table or equivalent are eligible for the Extended Capstone Project.
Extended Capstone Project candidates take Capstone Project units ELEC5020 and ELEC5022 (total 18 cp) in place of Capstone Project ELEC5021 and 6 cp of elective units.
ELEC5020 Capstone Project A

Credit points: 6 Session: Semester 1,Semester 2 Classes: Independent project work. Prerequisites: 48 credits from MPE degree program Assessment: Through semester assessment (100%) Campus: Camperdown/Darlington Mode of delivery: Supervision Associated degrees: M E, M P E. Faculty: Engineering and Information Technologies
Note: Department permission required for enrolment
Students will work individually or in groups on an assigned project for the Semester. The concepts covered depend on the nature of the project, but broadly cover research and inquiry, and information literacy.
ELEC5021 Capstone Project B

Credit points: 6 Session: Semester 1,Semester 2 Classes: Independent project work. Corequisites: ELEC5020 Assessment: Through semester assessment (100%) Campus: Camperdown/Darlington Mode of delivery: Supervision Associated degrees: M E, M P E. Faculty: Engineering and Information Technologies
Note: Department permission required for enrolment
Students will work individually or in groups on an assigned project for the Semester. The concepts covered depend on the nature of the project, but broadly cover research and inquiry, and information literacy.
ELEC5022 Capstone Project B Extended

Credit points: 12 Session: Semester 1,Semester 2 Classes: no formal classes Prerequisites: 42 credit points in the Master of Engineering and WAM >70, or 66 credit points in the Master of Professional Engineering and WAM >70 or exemption Assessment: Through semester assessment (100%) Campus: Camperdown/Darlington Mode of delivery: Supervision Associated degrees: M E, M P E. Faculty: Engineering and Information Technologies
Note: Department permission required for enrolment
Students will work individually or in groups on an assigned project for the Semester. The concepts covered depend on the nature of the project, but broadly cover research and inquiry, and information literacy.

Research pathway

Candidates achieving an average mark of 75% or higher over 48 credit points of units of study in the Year Two Table or equivalent are eligible for the Research Pathway.
Research pathway candidates take Dissertation units Research pathway students take Dissertation units ELEC5222 and ELEC5223 (total 24 cp) in place of Capstone Project units and 12 cp of elective units.
ELEC5222 Dissertation A

Credit points: 12 Session: Semester 1,Semester 2 Classes: no formal classes Prohibitions: ELEC8901, ELEC8902, ENGG5222, ENGG5223 Assessment: Through semester assessment (100%) Campus: Camperdown/Darlington Mode of delivery: Supervision Associated degrees: M E, M P E. Faculty: Engineering and Information Technologies
Note: Department permission required for enrolment
Note: In order to enrol in a project, students must first secure an academic supervisor in an area that they are interested. The topic of your project must be determined in discussion with the supervisor. The supervisor can come from any of the Engineering Departments, however, they need to send confirmation of their supervision approval to the Postgraduate Administrator.
To complete a substantial research project and successfully analyse a problem, devise appropriate experiments, analyse the results and produce a well-argued, in-depth thesis.
Department permission required for enrolment in the following session(s); 1,2
ELEC5223 Dissertation B

Credit points: 12 Session: Semester 1,Semester 2 Classes: no formal classes Prohibitions: ELEC8901, ELEC8902, ENGG5222, ENGG5223 Assessment: Through semester assessmetn (100%) Campus: Camperdown/Darlington Mode of delivery: Supervision Associated degrees: M E, M P E. Faculty: Engineering and Information Technologies
Note: Department permission required for enrolment
Note: In order to enrol in a project, students must first secure an academic supervisor in an area that they are interested. The topic of your project must be determined in discussion with the supervisor. The supervisor can come from any of the Engineering Departments, however, they need to send confirmation of their supervision approval to the Postgraduate Administrator.
o complete a substantial research project and successfully analyse a problem, devise appropriate experiments, analyse the results and produce a well-argued, in-depth thesis.
Department permission required for enrolment in the following session(s); 1,2

Exchange units

Exchange units require the approval of the Program Director. With approval, up to 12 credit points of Exchange units may taken in place of other units, towards the requirements ofthe degree.
ENGG5231 Engineering Graduate Exchange A

Credit points: 6 Session: Int January,Int July Classes: overseas short-course. Prerequisites: Permission from faculty and school. Assessment: Through semester assessment (100%) Campus: Camperdown/Darlington Mode of delivery: Normal (lecture/lab/tutorial) Day Associated degrees: M E, M Inf Tech, M Inf Tech Man, M P E, M P L, M P M. Faculty: Engineering and Information Technologies
Note: Department permission required for enrolment
The purpose of this unit is to enable students to undertake an overseas learning activity during the university's summer or winter break while completing a Masters degree in either Engineering, Professional Engineering, Information Technologies or Project Management. The learning activity may comprise either a short project under academic or industry supervision or summer or winter school unit of study at an approved overseas institution. The learning activity should demonstrate outcomes and workload equivalent to a 6 credit point Master's level unit in the student's current award program.
Students may enrol in this unit with permission from the school and the Sub-Dean Students for the Faculty of Engineering and Information Technologies.
ENGG5232 Engineering Graduate Exchange B

Credit points: 6 Session: Int January,Int July Classes: overseas short-course Prerequisites: Permission from faculty and school. Assessment: Through semester assessment (100%) Campus: Camperdown/Darlington Mode of delivery: Normal (lecture/lab/tutorial) Day Associated degrees: M E, M Inf Tech, M Inf Tech Man, M P E, M P L, M P M. Faculty: Engineering and Information Technologies
Note: Department permission required for enrolment
The purpose of this unit is to enable students to undertake an overseas learning activity during the university's summer or winter break while completing a Masters degree in either Engineering, Professional Engineering, Information Technologies or Project Management. The learning activity may comprise either a short project under academic or industry supervision or summer or winter school unit of study at an approved overseas institution. The learning activity should demonstrate outcomes and workload equivalent to a 6 credit point Master's level unit in the student's current award program.
Students may enrol in this unit with permission from the school and the Sub-Dean Students for the Faculty of Engineering and Information Technologies.

For more information on units of study visit CUSP.