University of Sydney Handbooks - 2018 Archive

Download full 2018 archive Page archived at: Fri, 21 Sep 2018 05:39:44 +0000

Table 1: Financial Mathematics and Statistics

Errata
item Errata Date
1. MATH1021 Calculus Of One Variable: Semester 2 session has been added. 1/2/2018
2. MATH3976 Mathematical Computing (Advanced) Prerequisites should read: 12 credit points of MATH2XXX and [3 credit points from (MATH1923 or MATH1903 or MATH1933 or MATH1907), or a mark of 65 or above in (MATH1023 or MATH1003)] 6/2/2018

Unit of study Credit points A: Assumed knowledge P: Prerequisites C: Corequisites N: Prohibition Session

Financial Mathematics and Statistics

For a major in Financial Mathematics and Statistics, students are required to complete:
(i) MATH3075/3975;
(ii) STAT3011/3911;
(iii) STAT3012/3912; and
(iv) One of the following units of study: STAT3013/3913, STAT3014/3914, MATH3076/3976, MATH3078/3978, MATH3969, MATH3974 or INFO3404/3504
Junior units of study
MATH1021
Calculus Of One Variable
3    A HSC Mathematics Extension 1. Students who have not completed HSC Extension 1 Mathematics (or equivalent) are strongly advised to take the Extension 1 Mathematics Bridging Course (offered in February).
N MATH1011 or MATH1901 or MATH1906 or MATH1111 or ENVX1001 or MATH1001 or MATH1921 or MATH1931
Semester 1
MATH1921
Calculus Of One Variable (Advanced)
3    A (HSC Mathematics Extension 2) OR (Band E4 in HSC Mathematics Extension 1) or equivalent.
N MATH1001 or MATH1011 or MATH1906 or MATH1111 or ENVX1001 or MATH1901 or MATH1021 or MATH1931

Note: Department permission required for enrolment

Semester 1
MATH1931
Calculus Of One Variable (SSP)
3    A Band E4 in HSC Mathematics Extension 2 or equivalent.
N MATH1001 or MATH1011 or MATH1901 or MATH1111 or ENVX1001 or MATH1906 or MATH1021 or MATH1921

Note: Department permission required for enrolment
Enrolment is by invitation only.
Semester 1
MATH1002
Linear Algebra
3    A HSC Mathematics or MATH1111. Students who have not completed HSC Mathematics (or equivalent) are strongly advised to take the Mathematics Bridging Course (offered in February).
N MATH1012 or MATH1014 or MATH1902
Semester 1
Summer Main
MATH1902
Linear Algebra (Advanced)
3    A (HSC Mathematics Extension 2) OR (90 or above in HSC Mathematics Extension 1) or equivalent
N MATH1002 or MATH1012 or MATH1014

Note: Department permission required for enrolment

Semester 1
MATH1023
Multivariable Calculus and Modelling
3    A HSC Mathematics Extension 1. Students who have not completed HSC Extension 1 Mathematics (or equivalent) are strongly advised to take the Extension 1 Mathematics Bridging Course (offered in February).
N MATH1013 or MATH1903 or MATH1907 or MATH1003 or MATH1923 or MATH1933
Semester 2
MATH1923
Multivariable Calculus and Modelling (Adv)
3    A (HSC Mathematics Extension 2) OR (Band E4 in HSC Mathematics Extension 1) or equivalent.
N MATH1003 or MATH1013 or MATH1907 or MATH1903 or MATH1023 or MATH1933

Note: Department permission required for enrolment

Semester 2
MATH1933
Multivariable Calculus and Modelling (SSP)
3    A Band E4 in HSC Mathematics Extension 2 or equivalent.
N MATH1003 or MATH1903 or MATH1013 or MATH1907 or MATH1023 or MATH1923

Note: Department permission required for enrolment
Enrolment is by invitation only.
Semester 2
MATH1005
Statistical Thinking with Data
3    A HSC Mathematics. Students who have not completed HSC Mathematics (or equivalent) are strongly advised to take the Mathematics Bridging Course (offered in February).
N MATH1015 or MATH1905 or STAT1021 or STAT1022 or ECMT1010 or ENVX1001 or ENVX1002 or BUSS1020
Semester 2
Summer Main
Winter Main
MATH1905
Statistical Thinking with Data (Advanced)
3    A (HSC Mathematics Extension 2) OR (90 or above in HSC Mathematics Extension 1) or equivalent
N MATH1005 or MATH1015 or STAT1021 or STAT1022 or ECMT1010 or ENVX1001 or ENVX1002 or BUSS1020

Note: Department permission required for enrolment

Semester 2
MATH1001
Differential Calculus
3    A HSC Mathematics Extension 1. Students who have not completed HSC Extension 1 Mathematics (or equivalent) are strongly advised to take the Extension 1 Mathematics Bridging Course (offered in February).
C MATH1003 or MATH1903
N MATH1011 or MATH1901 or MATH1906 or MATH1111 or ENVX1001.
Semester 1
Summer Main
MATH1003
Integral Calculus and Modelling
3    A HSC Mathematics Extension 1 or MATH1001 or MATH1011 or a credit or higher in MATH1111. Students who have not completed HSC Extension 1 Mathematics (or equivalent) are strongly advised to take the Extension 1 Mathematics Bridging Course (offered in February).
N MATH1013 or MATH1903 or MATH1907
Summer Main
DATA1001
Foundations of Data Science
6    N MATH1005 or MATH1905 or MATH1015 or MATH1115 or ENVX1001 or ENVX1002 or ECMT1010 or BUSS1020 or STAT1021
Semester 1
Semester 2
Intermediate units of study
DATA2002
Data Analytics: Learning from Data
6    A (Basic Linear Algebra and some coding) or QBUS1040
P [DATA1001 or ENVX1001 or ENVX1002] or [MATH10X5 and MATH1115] or [MATH10X5 and STAT2011] or [MATH1905 and MATH1XXX (except MATH1XX5)] or [BUSS1020 or ECMT1010 or STAT1021]
N STAT2012 or STAT2912
Semester 2
MATH2070
Optimisation and Financial Mathematics
6    A MATH1X23 or MATH1933 or MATH1X03 or MATH1907
P (MATH1X21 or MATH1011 or MATH1931 or MATH1X01 or MATH1906) and (MATH1014 or MATH1X02)
N MATH2010 or MATH2033 or MATH2933 or MATH2970 or ECMT3510


Students may enrol in both MATH2070 and MATH3075 in the same semester
Semester 2
MATH2970
Optimisation and Financial Mathematics Adv
6    A MATH19X3 or MATH1907 or a mark of 65 or above in MATH1003 or MATH1023
P [MATH19X1 or MATH1906 or (a mark of 65 or above in MATH1021 or MATH1001)] and [MATH1902 or (a mark of 65 or above in MATH1002)]
N MATH2010 or MATH2033 or MATH2933 or MATH2070 or ECMT3510


Students may enrol in both MATH2970 and MATH3975 in the same semester
Semester 2
STAT2011
Probability and Estimation Theory
6    P (MATH1X21 or MATH1931 or MATH1X01 or MATH1906 or MATH1011) and (MATH1XX5 or STAT1021 or ECMT1010 or BUSS1020)
N STAT2901 or STAT2001 or STAT2911
Semester 1
STAT2911
Probability and Statistical Models (Adv)
6    P [MATH19X3 or MATH1907 or (a mark of 65 in MATH1023 or MATH1003)] and [MATH1905 or MATH1904 or (a mark of 65 in MATH1005 or ECMT1010 or BUSS1020)]
N STAT2001 or STAT2901 or STAT2011
Semester 1
STAT2912
Statistical Tests (Advanced)
6    A STAT2911
P MATH1905 or Credit in MATH1005 or Credit in ECMT1010 or Credit in BUSS1020
N STAT2012 or STAT2004 or DATA2002
Semester 2
Senior core units of study
MATH3075
Financial Mathematics
6    P 12 credit points of Intermediate Mathematics, including (MATH2070 or MATH2970)
N MATH3975 or MATH3015 or MATH3933
Semester 2
MATH3975
Financial Mathematics (Advanced)
6    P Credit average or greater in 12 credit points of Intermediate Mathematics (including MATH2070 or MATH2970)
N MATH3933 or MATH3015 or MATH3075
Semester 2
STAT3011
Stochastic Processes and Time Series
6    P STAT2X11 and (MATH1X03 or MATH1907 or MATH1X23 or MATH1933).
N STAT3911 or STAT3903 or STAT3003 or STAT3905 or STAT3005
Semester 1
STAT3911
Stochastic Processes and Time Series Adv
6    P (STAT2911 or a mark of 65 or above in STAT2011) and (MATH1X03 or MATH1907 or MATH1X23 or MATH1933)
N STAT3011 or STAT3905 or STAT3005 or STAT3003 or STAT3903
Semester 1
STAT3012
Applied Linear Models
6    P (DATA2002 or STAT2X12) and (MATH1X02 or MATH1014)
N STAT3002 or STAT3004 or STAT3902 or STAT3912 or STAT3904
Semester 1
STAT3912
Applied Linear Models (Advanced)
6    P [STAT2912 or (a mark of 65 or above in STAT2012 or DATA2002)] and (MATH2X61 or MATH1902 or MATH2X22)
N STAT3012 or STAT3002 or STAT3902 or STAT3004 or STAT3904
Semester 1
Senior elective units of study
STAT3013
Statistical Inference
6    P STAT2X11 and (DATA2002 or STAT2X12)
N STAT3913 or STAT3001 or STAT3901
Semester 2
STAT3913
Statistical Inference Advanced
6    P STAT2911 and (DATA2002 or STAT2X12)
N STAT3013 or STAT3901 or STAT3001
Semester 2
STAT3014
Applied Statistics
6    A STAT3012 or STAT3912
P DATA2002 or STAT2X12
N STAT3914 or STAT3002 or STAT3902 or STAT3006
Semester 2
STAT3914
Applied Statistics Advanced
6    A STAT3912
P STAT2912 or (a mark of 65 or above in STAT2012 or DATA2002)
N STAT3014 or STAT3907 or STAT3902 or STAT3006 or STAT3002
Semester 2
MATH3076
Mathematical Computing
6    P 12 credit points of MATH2XXX and 6 credit points from (MATH1021 or MATH1001 or MATH1023 or MATH1003 or MATH19X1 or MATH19X3 or MATH1906 or MATH1907)
N MATH3976 or MATH3016 or MATH3916
Semester 1
MATH3976
Mathematical Computing (Advanced)
6    P 12 credit points of MATH2XXX and [6 credit points from (MATH1923 or MATH1903 or MATH1933 or MATH1907), or a mark of 65 or above in (MATH1023 or MATH1003)]
N MATH3076 or MATH3016 or MATH3916
Semester 1
MATH3078
PDEs and Waves
6    A [MATH2X61 and MATH2X65] or [MATH2X21 and MATH2X22]
P 12 credit points of Intermediate Mathematics
N MATH3018 or MATH3921 or MATH3978
Semester 2
MATH3978
PDEs and Waves (Advanced)
6    A [MATH2X61 and MATH2X65] or [MATH2X21 and MATH2X22]
P Credit average or greater in 12 credit points of Intermediate Mathematics
N MATH3078 or MATH3018 or MATH3921
Semester 2
MATH3969
Measure Theory and Fourier Analysis (Adv)
6    A At least 6 credit points of (Intermediate Advanced Mathematics or Senior Advanced Mathematics units)
P Credit average or greater in 12 credit points Intermediate Mathematics
N MATH3909
Semester 2
MATH3974
Fluid Dynamics (Advanced)
6    A [MATH2961 and MATH2965] or [MATH2921 and MATH2922]
P Credit average or greater in 12 credit points of Intermediate Mathematics
N MATH3914
Semester 1
DATA3404
Data Science Platforms
6    A This unit of study assumes that students have previous knowledge of database structures and of SQL. The prerequisite material is covered in DATA2001 or ISYS2120. Familiarity with a programming language (e.g. Java or C) is also expected.
P DATA2001 OR ISYS2120 OR INFO2120 OR INFO2820
N INFO3504 OR INFO3404
Semester 1

Financial Mathematics and Statistics

For a major in Financial Mathematics and Statistics, students are required to complete:
(i) MATH3075/3975;
(ii) STAT3011/3911;
(iii) STAT3012/3912; and
(iv) One of the following units of study: STAT3013/3913, STAT3014/3914, MATH3076/3976, MATH3078/3978, MATH3969, MATH3974 or INFO3404/3504
Junior units of study
MATH1021 Calculus Of One Variable

Credit points: 3 Session: Semester 1 Classes: 2x1-hr lectures; 1x1-hr tutorial per week Prohibitions: MATH1011 or MATH1901 or MATH1906 or MATH1111 or ENVX1001 or MATH1001 or MATH1921 or MATH1931 Assumed knowledge: HSC Mathematics Extension 1. Students who have not completed HSC Extension 1 Mathematics (or equivalent) are strongly advised to take the Extension 1 Mathematics Bridging Course (offered in February). Assessment: exam, quizzes, assignments Campus: Camperdown/Darlington, Sydney Mode of delivery: Normal (lecture/lab/tutorial) day
Calculus is a discipline of mathematics that finds profound applications in science, engineering, and economics. This unit investigates differential calculus and integral calculus of one variable and the diverse applications of this theory. Emphasis is given both to the theoretical and foundational aspects of the subject, as well as developing the valuable skill of applying the mathematical theory to solve practical problems. Topics covered in this unit of study include complex numbers, functions of a single variable, limits and continuity, differentiation, optimisation, Taylor polynomials, Taylor's Theorem, Taylor series, Riemann sums, and Riemann integrals.
Textbooks
As set out in the Junior Mathematics Handbook.
MATH1921 Calculus Of One Variable (Advanced)

Credit points: 3 Session: Semester 1 Classes: 2x1-hr lectures; and 1x1-hr tutorial per week Prohibitions: MATH1001 or MATH1011 or MATH1906 or MATH1111 or ENVX1001 or MATH1901 or MATH1021 or MATH1931 Assumed knowledge: (HSC Mathematics Extension 2) OR (Band E4 in HSC Mathematics Extension 1) or equivalent. Assessment: exam, quizzes, assignments Campus: Camperdown/Darlington, Sydney Mode of delivery: Normal (lecture/lab/tutorial) day
Note: Department permission required for enrolment
Calculus is a discipline of mathematics that finds profound applications in science, engineering, and economics. This unit investigates differential calculus and integral calculus of one variable and the diverse applications of this theory. Emphasis is given both to the theoretical and foundational aspects of the subject, as well as developing the valuable skill of applying the mathematical theory to solve practical problems. Topics covered in this unit of study include complex numbers, functions of a single variable, limits and continuity, differentiation, optimisation, Taylor polynomials, Taylor's Theorem, Taylor series, Riemann sums, and Riemann integrals. Additional theoretical topics included in this advanced unit include the Intermediate Value Theorem, Rolle's Theorem, and the Mean Value Theorem.
Textbooks
As set out in the Junior Mathematics Handbook
MATH1931 Calculus Of One Variable (SSP)

Credit points: 3 Session: Semester 1 Classes: 2x1-hr lectures; 1x1-hr seminar; and 1x1-hr tutorial per week Prohibitions: MATH1001 or MATH1011 or MATH1901 or MATH1111 or ENVX1001 or MATH1906 or MATH1021 or MATH1921 Assumed knowledge: Band E4 in HSC Mathematics Extension 2 or equivalent. Assessment: exam, quizzes, assignments, seminar participation Campus: Camperdown/Darlington, Sydney Mode of delivery: Normal (lecture/lab/tutorial) day
Note: Department permission required for enrolment
Note: Enrolment is by invitation only.
The Mathematics Special Studies Program is for students with exceptional mathematical aptitude, and requires outstanding performance in past mathematical studies. Students will cover the material of MATH1921 Calculus of One Variable (Adv), and attend a weekly seminar covering special topics on available elsewhere in the Mathematics and Statistics program.
MATH1002 Linear Algebra

Credit points: 3 Session: Semester 1,Summer Main Classes: Two 1 hour lectures and one 1 hour tutorial per week. Prohibitions: MATH1012 or MATH1014 or MATH1902 Assumed knowledge: HSC Mathematics or MATH1111. Students who have not completed HSC Mathematics (or equivalent) are strongly advised to take the Mathematics Bridging Course (offered in February). Assessment: One 1.5 hour examination, assignments and quizzes (100%) Campus: Camperdown/Darlington, Sydney Mode of delivery: Normal (lecture/lab/tutorial) day
MATH1002 is designed to provide a thorough preparation for further study in mathematics and statistics. It is a core unit of study providing three of the twelve credit points required by the Faculty of Science as well as a Junior level requirement in the Faculty of Engineering.
This unit of study introduces vectors and vector algebra, linear algebra including solutions of linear systems, matrices, determinants, eigenvalues and eigenvectors.
Textbooks
As set out in the Junior Mathematics Handbook
MATH1902 Linear Algebra (Advanced)

Credit points: 3 Session: Semester 1 Classes: Two 1 hour lectures and one 1 hour tutorial per week. Prohibitions: MATH1002 or MATH1012 or MATH1014 Assumed knowledge: (HSC Mathematics Extension 2) OR (90 or above in HSC Mathematics Extension 1) or equivalent Assessment: One 1.5 hour examination, assignments and quizzes (100%) Campus: Camperdown/Darlington, Sydney Mode of delivery: Normal (lecture/lab/tutorial) day
Note: Department permission required for enrolment
This unit is designed to provide a thorough preparation for further study in mathematics and statistics. It is a core unit of study providing three of the twelve credit points required by the Faculty of Science as well as a Junior level requirement in the Faculty of Engineering. It parallels the normal unit MATH1002 but goes more deeply into the subject matter and requires more mathematical sophistication.
Textbooks
As set out in the Junior Mathematics Handbook
MATH1023 Multivariable Calculus and Modelling

Credit points: 3 Session: Semester 2 Classes: 2x1-hr lectures; 1x1-hr tutorial per week Prohibitions: MATH1013 or MATH1903 or MATH1907 or MATH1003 or MATH1923 or MATH1933 Assumed knowledge: HSC Mathematics Extension 1. Students who have not completed HSC Extension 1 Mathematics (or equivalent) are strongly advised to take the Extension 1 Mathematics Bridging Course (offered in February). Assessment: exam, quizzes, assignments Campus: Camperdown/Darlington, Sydney Mode of delivery: Normal (lecture/lab/tutorial) day
Calculus is a discipline of mathematics that finds profound applications in science, engineering, and economics. This unit investigates multivariable differential calculus and modelling. Emphasis is given both to the theoretical and foundational aspects of the subject, as well as developing the valuable skill of applying the mathematical theory to solve practical problems. Topics covered in this unit of study include mathematical modelling, first order differential equations, second order differential equations, systems of linear equations, visualisation in 2 and 3 dimensions, partial derivatives, directional derivatives, the gradient vector, and optimisation for functions of more than one variable.
Textbooks
As set out in the Junior Mathematics Handbook
MATH1923 Multivariable Calculus and Modelling (Adv)

Credit points: 3 Session: Semester 2 Classes: 2x1-hr lectures; and 1x1-hr tutorial per week Prohibitions: MATH1003 or MATH1013 or MATH1907 or MATH1903 or MATH1023 or MATH1933 Assumed knowledge: (HSC Mathematics Extension 2) OR (Band E4 in HSC Mathematics Extension 1) or equivalent. Assessment: exam, quizzes, assignments Campus: Camperdown/Darlington, Sydney Mode of delivery: Normal (lecture/lab/tutorial) day
Note: Department permission required for enrolment
Calculus is a discipline of mathematics that finds profound applications in science, engineering, and economics. This unit investigates multivariable differential calculus and modelling. Emphasis is given both to the theoretical and foundational aspects of the subject, as well as developing the valuable skill of applying the mathematical theory to solve practical problems. Topics covered in this unit of study include mathematical modelling, first order differential equations, second order differential equations, systems of linear equations, visualisation in 2 and 3 dimensions, partial derivatives, directional derivatives, the gradient vector, and optimisation for functions of more than one variable. Additional topics covered in this advanced unit of study include the use of diagonalisation of matrices to study systems of linear equation and optimisation problems, limits of functions of two or more variables, and the derivative of a function of two or more variables.
Textbooks
As set out in the Junior Mathematics Handbook
MATH1933 Multivariable Calculus and Modelling (SSP)

Credit points: 3 Session: Semester 2 Classes: 2x1-hr lectures; 1x1-hr seminar; and 1x1-hr tutorial per week Prohibitions: MATH1003 or MATH1903 or MATH1013 or MATH1907 or MATH1023 or MATH1923 Assumed knowledge: Band E4 in HSC Mathematics Extension 2 or equivalent. Assessment: exam, quizzes, assignments, seminar participation Campus: Camperdown/Darlington, Sydney Mode of delivery: Normal (lecture/lab/tutorial) day
Note: Department permission required for enrolment
Note: Enrolment is by invitation only.
The Mathematics Special Studies Program is for students with exceptional mathematical aptitude, and requires outstanding performance in past mathematical studies. Students will cover the material of MATH1923 Multivariable Calculus and Modelling (Adv), and attend a weekly seminar covering special topics on available elsewhere in the Mathematics and Statistics program.
MATH1005 Statistical Thinking with Data

Credit points: 3 Session: Semester 2,Summer Main,Winter Main Classes: Lectures 2 hrs/week; Practical 1 hr/week Prohibitions: MATH1015 or MATH1905 or STAT1021 or STAT1022 or ECMT1010 or ENVX1001 or ENVX1002 or BUSS1020 Assumed knowledge: HSC Mathematics. Students who have not completed HSC Mathematics (or equivalent) are strongly advised to take the Mathematics Bridging Course (offered in February). Assessment: One 1.5 hour examination, assignments and quizzes (100%) Campus: Camperdown/Darlington, Sydney Mode of delivery: Normal (lecture/lab/tutorial) day
In a data-rich world, global citizens need to problem solve with data, and evidence based decision-making is essential is every field of research and work.
This unit equips you with the foundational statistical thinking to become a critical consumer of data. You will learn to think analytically about data and to evaluate the validity and accuracy of any conclusions drawn. Focusing on statistical literacy, the unit covers foundational statistical concepts, including the design of experiments, exploratory data analysis, sampling and tests of significance.
Textbooks
Freedman, Pisani and Purves, Statistics, Norton, 2007
MATH1905 Statistical Thinking with Data (Advanced)

Credit points: 3 Session: Semester 2 Classes: Two 1 hour lectures and one 1 hour tutorial per week. Prohibitions: MATH1005 or MATH1015 or STAT1021 or STAT1022 or ECMT1010 or ENVX1001 or ENVX1002 or BUSS1020 Assumed knowledge: (HSC Mathematics Extension 2) OR (90 or above in HSC Mathematics Extension 1) or equivalent Assessment: One 1.5 hour examination, assignments and quizzes (100%) Campus: Camperdown/Darlington, Sydney Mode of delivery: Normal (lecture/lab/tutorial) day
Note: Department permission required for enrolment
This unit is designed to provide a thorough preparation for further study in mathematics and statistics. It is a core unit of study providing three of the twelve credit points required by the Faculty of Science as well as a Junior level requirement in the Faculty of Engineering. This Advanced level unit of study parallels the normal unit MATH1005 but goes more deeply into the subject matter and requires more mathematical sophistication.
Textbooks
As set out in the Junior Mathematics Handbook
MATH1001 Differential Calculus

Credit points: 3 Session: Semester 1,Summer Main Classes: Two 1 hour lectures and one 1 hour tutorial per week. Corequisites: MATH1003 or MATH1903 Prohibitions: MATH1011 or MATH1901 or MATH1906 or MATH1111 or ENVX1001. Assumed knowledge: HSC Mathematics Extension 1. Students who have not completed HSC Extension 1 Mathematics (or equivalent) are strongly advised to take the Extension 1 Mathematics Bridging Course (offered in February). Assessment: One 1.5 hour examination, assignments and quizzes (100%) Campus: Camperdown/Darlington, Sydney Mode of delivery: Normal (lecture/lab/tutorial) day
MATH1001 is designed to provide a thorough preparation for further study in mathematics and statistics. It is a core unit of study providing three of the twelve credit points required by the Faculty of Science as well as a Junior level requirement in the Faculty of Engineering. This unit of study looks at complex numbers, functions of a single variable, limits and continuity, vector functions and functions of two variables. Differential calculus is extended to functions of two variables. Taylor's theorem as a higher order mean value theorem.
Textbooks
As set out in the Junior Mathematics Handbook.
MATH1003 Integral Calculus and Modelling

Credit points: 3 Session: Summer Main Classes: Two 1 hour lectures and one 1 hour tutorial per week. Prohibitions: MATH1013 or MATH1903 or MATH1907 Assumed knowledge: HSC Mathematics Extension 1 or MATH1001 or MATH1011 or a credit or higher in MATH1111. Students who have not completed HSC Extension 1 Mathematics (or equivalent) are strongly advised to take the Extension 1 Mathematics Bridging Course (offered in February). Assessment: One 1.5 hour examination, assignments and quizzes (100%) Campus: Camperdown/Darlington, Sydney Mode of delivery: Normal (lecture/lab/tutorial) day
MATH1003 is designed to provide a thorough preparation for further study in mathematics and statistics. It is a core unit of study providing three of the twelve credit points required by the Faculty of Science as well as a Junior level requirement in the Faculty of Engineering.This unit of study first develops the idea of the definite integral from Riemann sums, leading to the Fundamental Theorem of Calculus. Various techniques of integration are considered, such as integration by parts.The second part is an introduction to the use of first and second order differential equations to model a variety of scientific phenomena.
Textbooks
As set out in the Junior Mathematics Handbook
DATA1001 Foundations of Data Science

Credit points: 6 Teacher/Coordinator: Dr Di Warren Session: Semester 1,Semester 2 Classes: lecture 3 hrs/week; computer tutorial 2 hr/week Prohibitions: MATH1005 or MATH1905 or MATH1015 or MATH1115 or ENVX1001 or ENVX1002 or ECMT1010 or BUSS1020 or STAT1021 Assessment: assignments, quizzes, presentation, exam Campus: Camperdown/Darlington, Sydney Mode of delivery: Normal (lecture/lab/tutorial) day
DATA1001 is a foundational unit in the Data Science major. The unit focuses on developing critical and statistical thinking skills for all students. Does mobile phone usage increase the incidence of brain tumours? What is the public's attitude to shark baiting following a fatal attack? Statistics is the science of decision making, essential in every industry and undergirds all research which relies on data. Students will use problems and data from the physical, health, life and social sciences to develop adaptive problem solving skills in a team setting. Taught interactively with embedded technology, DATA1001 develops critical thinking and skills to problem-solve with data. It is the prerequisite for DATA2002.
Textbooks
Statistics, Fourth Edition, Freedman Pisani Purves
Intermediate units of study
DATA2002 Data Analytics: Learning from Data

Credit points: 6 Teacher/Coordinator: Jean Yang Session: Semester 2 Classes: lecture 3 hrs/week; computer tutorial 2 hr/week Prerequisites: [DATA1001 or ENVX1001 or ENVX1002] or [MATH10X5 and MATH1115] or [MATH10X5 and STAT2011] or [MATH1905 and MATH1XXX (except MATH1XX5)] or [BUSS1020 or ECMT1010 or STAT1021] Prohibitions: STAT2012 or STAT2912 Assumed knowledge: (Basic Linear Algebra and some coding) or QBUS1040 Assessment: written assignment, presentation, exams Campus: Camperdown/Darlington, Sydney Mode of delivery: Normal (lecture/lab/tutorial) day
Technological advances in science, business, engineering has given rise to a proliferation of data from all aspects of our life. Understanding the information presented in these data is critical as it enables informed decision making into many areas including market intelligence and science. DATA2002 is an intermediate course in statistics and data sciences, focusing on learning data analytic skills for a wide range of problems and data. How should the Australian government measure and report employment and unemployment? Can we tell the difference between decaffeinated and regular coffee ? In this course, you will learn how to ingest, combine and summarise data from a variety of data models which are typically encountered in data science projects as well as reinforcing their programming skills through experience with statistical programming language. You will also be exposed to the concept of statistical machine learning and develop the skill to analyze various types of data in order to answer a scientific question. From this unit, you will develop knowledge and skills that will enable you to embrace data analytic challenges stemming from everyday problems.
MATH2070 Optimisation and Financial Mathematics

Credit points: 6 Session: Semester 2 Classes: Three 1 hour lectures, one 1 hour tutorial and one 1 hour computer laboratory per week. Prerequisites: (MATH1X21 or MATH1011 or MATH1931 or MATH1X01 or MATH1906) and (MATH1014 or MATH1X02) Prohibitions: MATH2010 or MATH2033 or MATH2933 or MATH2970 or ECMT3510 Assumed knowledge: MATH1X23 or MATH1933 or MATH1X03 or MATH1907 Assessment: One 2 hour exam, assignments, quiz, project (100%) Campus: Camperdown/Darlington, Sydney Mode of delivery: Normal (lecture/lab/tutorial) day
Note: Students may enrol in both MATH2070 and MATH3075 in the same semester
Problems in industry and commerce often involve maximising profits or minimising costs subject to constraints arising from resource limitations. The first part of this unit looks at programming problems and their solution using the simplex algorithm; nonlinear optimisation and the Kuhn Tucker conditions.
The second part of the unit deals with utility theory and modern portfolio theory. Topics covered include: pricing under the principles of expected return and expected utility; mean-variance Markowitz portfolio theory, the Capital Asset Pricing Model, log-optimal portfolios and the Kelly criterion; dynamical programming. Some understanding of probability theory including distributions and expectations is required in this part.
Theory developed in lectures will be complemented by computer laboratory sessions using MATLAB. Minimal computing experience will be required.
MATH2970 Optimisation and Financial Mathematics Adv

Credit points: 6 Session: Semester 2 Classes: Three 1 hour lectures, one 1 hour tutorial and one 1 hour computer laboratory per week (lectures given in common with MATH2070). Prerequisites: [MATH19X1 or MATH1906 or (a mark of 65 or above in MATH1021 or MATH1001)] and [MATH1902 or (a mark of 65 or above in MATH1002)] Prohibitions: MATH2010 or MATH2033 or MATH2933 or MATH2070 or ECMT3510 Assumed knowledge: MATH19X3 or MATH1907 or a mark of 65 or above in MATH1003 or MATH1023 Assessment: One 2 hour exam, assignments, quizzes (100%) Campus: Camperdown/Darlington, Sydney Mode of delivery: Normal (lecture/lab/tutorial) day
Note: Students may enrol in both MATH2970 and MATH3975 in the same semester
The content of this unit of study parallels that of MATH2070, but students enrolled at Advanced level will undertake more advanced problem solving and assessment tasks, and some additional topics may be included.
STAT2011 Probability and Estimation Theory

Credit points: 6 Session: Semester 1 Classes: Three 1 hour lectures, one 1 hour tutorial and one 1 hour computer laboratory week. Prerequisites: (MATH1X21 or MATH1931 or MATH1X01 or MATH1906 or MATH1011) and (MATH1XX5 or STAT1021 or ECMT1010 or BUSS1020) Prohibitions: STAT2901 or STAT2001 or STAT2911 Assessment: One 2 hour exam, assignments and/or quizzes, and computer practical reports (100%) Campus: Camperdown/Darlington, Sydney Mode of delivery: Normal (lecture/lab/tutorial) day
This unit provides an introduction to univariate techniques in data analysis and the most common statistical distributions that are used to model patterns of variability. Common discrete random models like the binomial, Poisson and geometric, continuous models including the normal and exponential will be studied along with elementary regression models. The method of moments and maximum likelihood techniques for fitting statistical distributions to data will be explored. The unit will have weekly computer classes where candidates will learn to use a statistical computing package to perform simulations and carry out computer intensive estimation techniques like the bootstrap method.
STAT2911 Probability and Statistical Models (Adv)

Credit points: 6 Session: Semester 1 Classes: Three 1 hour lectures, one 1 hour tutorial and one 1 hour computer laboratory per week. Prerequisites: [MATH19X3 or MATH1907 or (a mark of 65 in MATH1023 or MATH1003)] and [MATH1905 or MATH1904 or (a mark of 65 in MATH1005 or ECMT1010 or BUSS1020)] Prohibitions: STAT2001 or STAT2901 or STAT2011 Assessment: One 2 hour exam, assignments and/or quizzes, and computer practical reports (100%) Campus: Camperdown/Darlington, Sydney Mode of delivery: Normal (lecture/lab/tutorial) day
This unit is essentially an advanced version of STAT2011, with an emphasis on the mathematical techniques used to manipulate random variables and probability models. Common distributions including the Poisson, normal, beta and gamma families as well as the bivariate normal are introduced. Moment generating functions and convolution methods are used to understand the behaviour of sums of random variables. The method of moments and maximum likelihood techniques for fitting statistical distributions to data will be explored. The notions of conditional expectation and prediction will be covered as will be distributions related to the normal: chi^2, t and F. The unit will have weekly computer classes where candidates will learn to use a statistical computing package to perform simulations and carry out computer intensive estimation techniques like the bootstrap method.
STAT2912 Statistical Tests (Advanced)

Credit points: 6 Session: Semester 2 Classes: Three 1 hour lectures, one 1 hour tutorial and one 1 hour computer laboratory per week. Prerequisites: MATH1905 or Credit in MATH1005 or Credit in ECMT1010 or Credit in BUSS1020 Prohibitions: STAT2012 or STAT2004 or DATA2002 Assumed knowledge: STAT2911 Assessment: One 2-hour exam, assignments and/or quizzes, computer practical reports and one computer practical exam (100%) Campus: Camperdown/Darlington, Sydney Mode of delivery: Normal (lecture/lab/tutorial) day
This unit is essentially an advanced version of STAT2012 with an emphasis on both methods and the mathematical derivation of these methods: Tests of hypotheses and confidence intervals, including t-tests, analysis of variance, regression - least squares and robust methods, power of tests, non-parametric methods, non-parametric smoothing, tests for count data, goodness of fit, contingency tables. Graphical methods and diagnostic methods are used throughout with all analyses discussed in the context of computation with real data using an interactive statistical package.
Senior core units of study
MATH3075 Financial Mathematics

Credit points: 6 Session: Semester 2 Classes: Three 1 hour lectures and one 1 hour tutorial per week. Prerequisites: 12 credit points of Intermediate Mathematics, including (MATH2070 or MATH2970) Prohibitions: MATH3975 or MATH3015 or MATH3933 Assessment: Two class quizzes and one 2 hour exam (100%) Campus: Camperdown/Darlington, Sydney Mode of delivery: Normal (lecture/lab/tutorial) day
This unit is an introduction to the mathematical theory of modern finance. Topics include: notion of arbitrage, pricing riskless securities, risky securities, utility theory, fundamental theorems of asset pricing, complete markets, introduction to options, binomial option pricing model, discrete random walks, Brownian motion, derivation of the Black-Scholes option pricing model, extensions and introduction to pricing exotic options, credit derivatives. A strong background in mathematical statistics and partial differential equations is an advantage, but is not essential. Students completing this unit have been highly sought by the finance industry, which continues to need graduates with quantitative skills. The lectures in the Normal unit are held concurrently with those of the corresponding Advanced unit.
MATH3975 Financial Mathematics (Advanced)

Credit points: 6 Session: Semester 2 Classes: Three 1 hour lectures and one 1 hour tutorial per week. Prerequisites: Credit average or greater in 12 credit points of Intermediate Mathematics (including MATH2070 or MATH2970) Prohibitions: MATH3933 or MATH3015 or MATH3075 Assessment: Two class quizzes and one 2 hour exam (100%) Campus: Camperdown/Darlington, Sydney Mode of delivery: Normal (lecture/lab/tutorial) day
This unit is an introduction to the mathematical theory of modern finance. Topics include: notion of arbitrage, pricing riskless securities, risky securities, utility theory, fundamental theorems of asset pricing, complete markets, introduction to options, binomial option pricing model, discrete random walks, Brownian motion, derivation of the Black-Scholes option pricing model, extensions and introduction to pricing exotic options, credit derivatives. A strong background in mathematical statistics and partial differential equations is an advantage, but is not essential. Students completing this unit have been highly sought by the finance industry, which continues to need graduates with quantitative skills. Students enrolled in this unit at the Advanced level will be expected to undertake more challenging assessment tasks. The lectures in the Advanced unit are held concurrently with those of the corresponding Normal unit.
STAT3011 Stochastic Processes and Time Series

Credit points: 6 Session: Semester 1 Classes: Three 1 hour lectures and one 1 hour tutorial per week; ten 1 hour computer laboratories per semester. Prerequisites: STAT2X11 and (MATH1X03 or MATH1907 or MATH1X23 or MATH1933). Prohibitions: STAT3911 or STAT3903 or STAT3003 or STAT3905 or STAT3005 Assessment: One 2 hour exam, assignments and/or quizzes, and computer practical reports (100%) Campus: Camperdown/Darlington, Sydney Mode of delivery: Normal (lecture/lab/tutorial) day
Section I of this course will introduce the fundamental concepts of applied stochastic processes and Markov chains used in financial mathematics, mathematical statistics, applied mathematics and physics. Section II of the course establishes some methods of modeling and analysing situations which depend on time. Fitting ARMA models for certain time series are considered from both theoretical and practical points of view. Throughout the course we will use the S-PLUS (or R) statistical packages to give analyses and graphical displays.
STAT3911 Stochastic Processes and Time Series Adv

Credit points: 6 Session: Semester 1 Classes: Three 1 hour lecture, one 1 hour tutorial per week, plus an extra 1 hour lecture per week on advanced material in the first half of the semester. Seven 1 hour computer laboratories (on time series) in the second half of the semester (one 1 hour class per week). Prerequisites: (STAT2911 or a mark of 65 or above in STAT2011) and (MATH1X03 or MATH1907 or MATH1X23 or MATH1933) Prohibitions: STAT3011 or STAT3905 or STAT3005 or STAT3003 or STAT3903 Assessment: One 2 hour exam, assignments and/or quizzes, and computer practical reports (100%) Campus: Camperdown/Darlington, Sydney Mode of delivery: Normal (lecture/lab/tutorial) day
This is an Advanced version of STAT3011. There will be 3 lectures in common with STAT3011. In addition to STAT3011 material, theory on branching processes and Brownian bridges will be covered.
STAT3012 Applied Linear Models

Credit points: 6 Session: Semester 1 Classes: Three 1 hour lectures, one 1 hour tutorial and one 1 hour computer laboratories per week. Prerequisites: (DATA2002 or STAT2X12) and (MATH1X02 or MATH1014) Prohibitions: STAT3002 or STAT3004 or STAT3902 or STAT3912 or STAT3904 Assessment: One 2 hour exam, assignments and/or quizzes, and computer practical reports (100%) Campus: Camperdown/Darlington, Sydney Mode of delivery: Normal (lecture/lab/tutorial) day
This course will introduce the fundamental concepts of analysis of data from both observational studies and experimental designs using classical linear methods, together with concepts of collection of data and design of experiments. First we will consider linear models and regression methods with diagnostics for checking appropriateness of models. We will look briefly at robust regression methods here. Then we will consider the design and analysis of experiments considering notions of replication, randomization and ideas of factorial designs. Throughout the course we will use the R statistical package to give analyses and graphical displays.
STAT3912 Applied Linear Models (Advanced)

Credit points: 6 Session: Semester 1 Classes: Three 1 hour lectures, one 1 hour tutorial and one 1 hour computer laboratory per week. Prerequisites: [STAT2912 or (a mark of 65 or above in STAT2012 or DATA2002)] and (MATH2X61 or MATH1902 or MATH2X22) Prohibitions: STAT3012 or STAT3002 or STAT3902 or STAT3004 or STAT3904 Assessment: One 2 hour exam, assignments and/or quizzes, and computer practical reports (100%) Campus: Camperdown/Darlington, Sydney Mode of delivery: Normal (lecture/lab/tutorial) day
This unit is essentially an Advanced version of STAT3012, with emphasis on the mathematical techniques underlying applied linear models together with proofs of distribution theory based on vector space methods. There will be 3 lectures per week in common with STAT3012 and some advanced material given in a separate advanced tutorial together with more advanced assessment work.
Senior elective units of study
STAT3013 Statistical Inference

Credit points: 6 Session: Semester 2 Classes: Three 1 hour lectures, one 1 hour tutorial and one 1 hour computer laboratory per week. Prerequisites: STAT2X11 and (DATA2002 or STAT2X12) Prohibitions: STAT3913 or STAT3001 or STAT3901 Assessment: One 2 hour exam, assignments and/or quizzes, and computer practical reports (100%) Campus: Camperdown/Darlington, Sydney Mode of delivery: Normal (lecture/lab/tutorial) day
In this course we will study basic topics in modern statistical inference. This will include traditional concepts of mathematical statistics: likelihood estimation, method of moments, properties of estimators, exponential families, decision-theory approach to hypothesis testing, likelihood ratio test as well as more recent approaches such as Bayes estimation, Empirical Bayes and nonparametric estimation. During the computer classes (using R software package) we will illustrate the various estimation techniques and give an introduction to computationally intensive methods like Monte Carlo, Gibbs sampling and EM-algorithm.
STAT3913 Statistical Inference Advanced

Credit points: 6 Session: Semester 2 Classes: Three 1 hour lectures, one 1 hour tutorial and one 1 hour computer laboratory per week. Prerequisites: STAT2911 and (DATA2002 or STAT2X12) Prohibitions: STAT3013 or STAT3901 or STAT3001 Assessment: One 2 hour exam, assignments and/or quizzes, and computer practical reports (100%) Campus: Camperdown/Darlington, Sydney Mode of delivery: Normal (lecture/lab/tutorial) day
This unit is an Advanced version of STAT3013, with emphasis on the mathematical techniques underlying statistical inference together with proofs based on distribution theory. There will be 3 lectures per week in common with some material required only in this advanced course and some advanced material given in a separate advanced tutorial together with more advanced assessment work.
STAT3014 Applied Statistics

Credit points: 6 Session: Semester 2 Classes: Three 1 hour lectures, one 1 hour tutorial and one 1 hour computer laboratory per week. Prerequisites: DATA2002 or STAT2X12 Prohibitions: STAT3914 or STAT3002 or STAT3902 or STAT3006 Assumed knowledge: STAT3012 or STAT3912 Assessment: One 2 hour exam, assignments and/or quizzes, and computer practical reports (100%) Campus: Camperdown/Darlington, Sydney Mode of delivery: Normal (lecture/lab/tutorial) day
This unit has three distinct but related components: Multivariate analysis; sampling and surveys; and generalised linear models. The first component deals with multivariate data covering simple data reduction techniques like principal components analysis and core multivariate tests including Hotelling's T^2, Mahalanobis' distance and Multivariate Analysis of Variance (MANOVA). The sampling section includes sampling without replacement, stratified sampling, ratio estimation, and cluster sampling. The final section looks at the analysis of categorical data via generalized linear models. Logistic regression and log-linear models will be looked at in some detail along with special techniques for analyzing discrete data with special structure.
STAT3914 Applied Statistics Advanced

Credit points: 6 Session: Semester 2 Classes: Three 1 hour lectures and one 1 hour computer laboratory per week plus an extra hour each week which will alternate between lectures and tutorials. Prerequisites: STAT2912 or (a mark of 65 or above in STAT2012 or DATA2002) Prohibitions: STAT3014 or STAT3907 or STAT3902 or STAT3006 or STAT3002 Assumed knowledge: STAT3912 Assessment: One 2 hour exam, assignments and/or quizzes, and computer practical reports (100%) Campus: Camperdown/Darlington, Sydney Mode of delivery: Normal (lecture/lab/tutorial) day
This unit is an Advanced version of STAT3014. There will be 3 lectures per week in common with STAT3014. The unit will have extra lectures focusing on multivariate distribution theory developing results for the multivariate normal, partial correlation, the Wishart distribution and Hotelling's T^2. There will also be more advanced tutorial and assessment work associated with this unit.
MATH3076 Mathematical Computing

Credit points: 6 Session: Semester 1 Classes: Three 1 hour lectures and one 1 hour laboratory per week. Prerequisites: 12 credit points of MATH2XXX and 6 credit points from (MATH1021 or MATH1001 or MATH1023 or MATH1003 or MATH19X1 or MATH19X3 or MATH1906 or MATH1907) Prohibitions: MATH3976 or MATH3016 or MATH3916 Assessment: One 2 hour exam, assignments, quizzes (100%) Campus: Camperdown/Darlington, Sydney Mode of delivery: Normal (lecture/lab/tutorial) day
This unit of study provides an introduction to Fortran 95/2003 programming and numerical methods. Topics covered include computer arithmetic and computational errors, systems of linear equations, interpolation and approximation, solution of nonlinear equations, quadrature, initial value problems for ordinary differential equations and boundary value problems.
MATH3976 Mathematical Computing (Advanced)

Credit points: 6 Session: Semester 1 Classes: Three 1 hour lectures and one 1 hour tutorial per week. Prerequisites: 12 credit points of MATH2XXX and [6 credit points from (MATH1923 or MATH1903 or MATH1933 or MATH1907), or a mark of 65 or above in (MATH1023 or MATH1003)] Prohibitions: MATH3076 or MATH3016 or MATH3916 Assessment: One 2 hour exam, assignments, quizzes (100%) Campus: Camperdown/Darlington, Sydney Mode of delivery: Normal (lecture/lab/tutorial) day
See entry for MATH3076 Mathematical Computing.
MATH3078 PDEs and Waves

Credit points: 6 Session: Semester 2 Classes: Three 1 hour lectures and one 1 hour tutorial per week. Prerequisites: 12 credit points of Intermediate Mathematics Prohibitions: MATH3018 or MATH3921 or MATH3978 Assumed knowledge: [MATH2X61 and MATH2X65] or [MATH2X21 and MATH2X22] Assessment: One 2 hour exam, assignments, quizzes (100%). To pass MATH3078/3978, students must achieve satisfactory performance in the in-semester assessment component. Campus: Camperdown/Darlington, Sydney Mode of delivery: Normal (lecture/lab/tutorial) day
This unit of study introduces Sturm-Liouville eigenvalue problems and their role in finding solutions to boundary value problems. Analytical solutions of linear PDEs are found using separation of variables and integral transform methods. Three of the most important equations of mathematical physics - the wave equation, the diffusion (heat) equation and Laplace's equation - are treated, together with a range of applications. There is particular emphasis on wave phenomena, with an introduction to the theory of sound waves and water waves.
To pass MATH3078, students must achieve satisfactory performance in the in-semester assessment component in order to pass the unit of study.
MATH3978 PDEs and Waves (Advanced)

Credit points: 6 Session: Semester 2 Classes: Three 1 hour lectures and one 1 hour tutorial per week. Prerequisites: Credit average or greater in 12 credit points of Intermediate Mathematics Prohibitions: MATH3078 or MATH3018 or MATH3921 Assumed knowledge: [MATH2X61 and MATH2X65] or [MATH2X21 and MATH2X22] Assessment: One 2 hour exam, assignments, quizzes (100%). To pass MATH3078 or MATH3978, students must achieve satisfactory performance in the in-semester assessment component. Campus: Camperdown/Darlington, Sydney Mode of delivery: Normal (lecture/lab/tutorial) day
As for MATH3078 PDEs and Waves but with more advanced problem solving and assessment tasks. Some additional topics may be included.
MATH3969 Measure Theory and Fourier Analysis (Adv)

Credit points: 6 Session: Semester 2 Classes: Three 1 hour lectures and one 1 hour tutorials per week. Prerequisites: Credit average or greater in 12 credit points Intermediate Mathematics Prohibitions: MATH3909 Assumed knowledge: At least 6 credit points of (Intermediate Advanced Mathematics or Senior Advanced Mathematics units) Assessment: One 2 hour exam, assignments, quizzes (100%) Campus: Camperdown/Darlington, Sydney Mode of delivery: Normal (lecture/lab/tutorial) day
Measure theory is the study of such fundamental ideas as length, area, volume, arc length and surface area. It is the basis for the integration theory used in advanced mathematics since it was developed by Henri Lebesgue in about 1900. Moreover, it is the basis for modern probability theory. The course starts by setting up measure theory and integration, establishing important results such as Fubini's Theorem and the Dominated Convergence Theorem which allow us to manipulate integrals. This is then applied to Fourier Analysis, and results such as the Inversion Formula and Plancherel's Theorem are derived. The Radon-Nikodyn Theorem provides a representation of measures in terms of a density. Probability theory is then discussed with topics including distributions and conditional expectation.
MATH3974 Fluid Dynamics (Advanced)

Credit points: 6 Session: Semester 1 Classes: Three 1 hour lectures and one 1 hour tutorial per week. Prerequisites: Credit average or greater in 12 credit points of Intermediate Mathematics Prohibitions: MATH3914 Assumed knowledge: [MATH2961 and MATH2965] or [MATH2921 and MATH2922] Assessment: One 2 hour exam (100%) Campus: Camperdown/Darlington, Sydney Mode of delivery: Normal (lecture/lab/tutorial) day
This unit of study provides an introduction to fluid dynamics, starting with a description of the governing equations and the simplifications gained by using stream functions or potentials. It develops elementary theorems and tools, including Bernoulli's equation, the role of vorticity, the vorticity equation, Kelvin's circulation theorem, Helmholtz's theorem, and an introduction to the use of tensors. Topics covered include viscous flows, lubrication theory, boundary layers, potential theory, and complex variable methods for 2-D airfoils. The unit concludes with an introduction to hydrodynamic stability theory and the transition to turbulent flow.
DATA3404 Data Science Platforms

Credit points: 6 Session: Semester 1 Classes: lectures, tutorials Prerequisites: DATA2001 OR ISYS2120 OR INFO2120 OR INFO2820 Prohibitions: INFO3504 OR INFO3404 Assumed knowledge: This unit of study assumes that students have previous knowledge of database structures and of SQL. The prerequisite material is covered in DATA2001 or ISYS2120. Familiarity with a programming language (e.g. Java or C) is also expected. Assessment: through semester assessment (40%), final exam (60%) Campus: Camperdown/Darlington, Sydney Mode of delivery: Normal (lecture/lab/tutorial) day
This unit of study provides a comprehensive overview of the internal mechanisms data science platforms and of systems that manage large data collections. These skills are needed for successful performance tuning and to understand the scalability challenges faced by when processing Big Data. This unit builds upon the second' year DATA2001 - 'Data Science - Big Data and Data Diversity' and correspondingly assumes a sound understanding of SQL and data analysis tasks.
The first part of this subject focuses on mechanisms for large-scale data management. It provides a deep understanding of the internal components of a data management platform. Topics include: physical data organization and disk-based index structures, query processing and optimisation, and database tuning.
The second part focuses on the large-scale management of big data in a distributed architecture. Topics include: distributed and replicated databases, information retrieval, data stream processing, and web-scale data processing.
The unit will be of interest to students seeking an introduction to data management tuning, disk-based data structures and algorithms, and information retrieval. It will be valuable to those pursuing such careers as Software Engineers, Data Engineers, Database Administrators, and Big Data Platform specialists.