Dr Tongliang Liu

BEng (USTC) PhD (UTS)
Lecturer in Statistical Learning Theory and Machine Learning
School of Information Technologies

J12 - The School of Information Technologies
The University of Sydney

Telephone +61 2 8627 5966

Website School of Information Technologies

Personal site

Selected publications

Download citations: PDF RTF Endnote

Journals

  • Liu, T., Tao, D., Song, M., Maybank, S. (2017). Algorithm-Dependent Generalization Bounds for Multi-Task Learning. IEEE Transactions on Pattern Analysis and Machine Intelligence, 39(2), 227-241. [More Information]
  • Liu, Q., Sun, Y., Wang, C., Liu, T., Tao, D. (2017). Elastic net hypergraph learning for image clustering and semi-supervised classification. IEEE Transactions on Image Processing, 26(1), 452-463. [More Information]
  • Zhang, Y., Du, B., Zhang, L., Liu, T. (2017). Joint Sparse Representation and Multitask Learning for Hyperspectral Target Detection. IEEE Transactions on Geoscience and Remote Sensing, 55(2), 894-906. [More Information]
  • Liu, T., Gong, M., Tao, D. (2016). A Large-Cone Nonnegative Matrix Factorization. IEEE Transactions on Neural Networks and Learning Systems, 23.
  • Liu, T., Tao, D. (2016). Classification with Noisy Labels by Importance Reweighting. IEEE Transactions on Pattern Analysis and Machine Intelligence, 38(3), 447-461. [More Information]
  • Liu, T., Tao, D., Xu, D. (2016). Dimensionality-Dependent Generalization Bounds for k-Dimensional Coding Schemes. Neural Computation, 28(10), 2213-2249. [More Information]
  • Xiong, H., Liu, T., Tao, D., Shen, H. (2016). Dual Diversified Dynamical Gaussian Process Latent Variable Model for Video Repairing. IEEE Transactions on Image Processing, 25(8), 3626-3637. [More Information]
  • Xu, C., Liu, T., Tao, D., Xu, C. (2016). Local Rademacher Complexity for Multi-Label Learning. IEEE Transactions on Image Processing, 25(3), 1495-1507. [More Information]
  • Liu, T., Tao, D. (2016). On the performance of Manhattan nonnegative matrix factorization. IEEE Transactions on Neural Networks and Learning Systems, 27(9), 1851-1863. [More Information]
  • Gui, J., Liu, T., Tao, D., Sun, Z., Tan, T. (2016). Representative Vector Machines: A Unified Framework for Classical Classifiers. IEEE Transactions on Cybernetics, 46(8), 1877-1888. [More Information]
  • Liu, H., Wu, J., Liu, T., Tao, D., Fu, Y. (2016). Spectral Ensemble Clustering via Weighted K-means: Theoretical and Practical Evidence (Forthcoming). IEEE Transactions On Knowledge And Data Engineering, 23.
  • Gui, J., Liu, T., Sun, Z., Tao, D., Tan, T. (2016). Supervised Discrete Hashing with Relaxation (Forthcoming). IEEE Transactions on Neural Networks and Learning Systems, 23.
  • Li, X., Liu, T., Deng, J., Tao, D. (2016). Video face editing using temporal-spatial-smooth warping. ACM Transactions on Intelligent Systems and Technology, 7(3), 1-28. [More Information]
  • Gong, C., Liu, T., Tao, D., Fu, K., Tu, E., Yang, J. (2015). Deformed Graph Laplacian for Semisupervised Learning. IEEE Transactions on Neural Networks and Learning Systems, 26(10), 2261-2274. [More Information]
  • Luo, Y., Liu, T., Tao, D., Xu, C. (2015). Multiview matrix completion for multilabel image classification. IEEE Transactions on Image Processing, 24(8), 2355-2368. [More Information]
  • Lu, Y., Xie, F., Liu, T., Jiang, Z., Tao, D. (2015). No Reference Quality Assessment for Multiply-Distorted Images Based on an Improved Bag-of-Words Model. IEEE Signal Processing Letters, 22(10), 1811-1815. [More Information]
  • Luo, Y., Liu, T., Tao, D., Xu, C. (2014). Decomposition-based transfer distance metric learning for image classification. IEEE Transactions on Image Processing, 23(9), 3789-3801. [More Information]

Conferences

  • Xiong, H., Liu, T., Tao, D. (2016). Diversified Dynamical Gaussian Process Latent Variable Model for Video Repair. The Thirtieth AAAI Conference on Artificial Intelligence (AAAI-16), Phoenix: Association for the Advancement of Artificial Intelligence.
  • Gong, M., Zhang, K., Liu, T., Tao, D., Glymour, C., Scholkopf, B. (2016). Domain Adaptation with Conditional Transferable Components. 33rd International Conference on Machine Learning (ICML 2016), New York: Journal of Machine Learning Research (JMLR).
  • Li, Y., Tian, X., Liu, T., Tao, D. (2015). Multi-task model and feature joint learning. 24th International Joint Conference on Artificial Intelligence (IJCAI 2015), Paolo Alto: AAAI Press.
  • Liu, H., Liu, T., Wu, J., Tao, D., Fu, Y. (2015). Spectral ensemble clustering. The 21st ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (KDD 2015), New York: Association for Computing Machinery (ACM). [More Information]
  • Shao, M., Li, S., Liu, T., Tao, D., Huang, T., Fu, Y. (2014). Learning relative features through adaptive pooling for image classification. 2014 IEEE International Conference on Multimedia and Expo Workshops (ICMEW 2014), Piscataway, New Jersey: IEEE. [More Information]
  • Liu, T., Tao, D. (2014). On the robustness and generalization of Cauchy regression. 2014 4th IEEE International Conference on Information Science and Technology (ICIST 2014), Piscataway: IEEE. [More Information]

2017

  • Liu, T., Tao, D., Song, M., Maybank, S. (2017). Algorithm-Dependent Generalization Bounds for Multi-Task Learning. IEEE Transactions on Pattern Analysis and Machine Intelligence, 39(2), 227-241. [More Information]
  • Liu, Q., Sun, Y., Wang, C., Liu, T., Tao, D. (2017). Elastic net hypergraph learning for image clustering and semi-supervised classification. IEEE Transactions on Image Processing, 26(1), 452-463. [More Information]
  • Zhang, Y., Du, B., Zhang, L., Liu, T. (2017). Joint Sparse Representation and Multitask Learning for Hyperspectral Target Detection. IEEE Transactions on Geoscience and Remote Sensing, 55(2), 894-906. [More Information]

2016

  • Liu, T., Gong, M., Tao, D. (2016). A Large-Cone Nonnegative Matrix Factorization. IEEE Transactions on Neural Networks and Learning Systems, 23.
  • Liu, T., Tao, D. (2016). Classification with Noisy Labels by Importance Reweighting. IEEE Transactions on Pattern Analysis and Machine Intelligence, 38(3), 447-461. [More Information]
  • Liu, T., Tao, D., Xu, D. (2016). Dimensionality-Dependent Generalization Bounds for k-Dimensional Coding Schemes. Neural Computation, 28(10), 2213-2249. [More Information]
  • Xiong, H., Liu, T., Tao, D. (2016). Diversified Dynamical Gaussian Process Latent Variable Model for Video Repair. The Thirtieth AAAI Conference on Artificial Intelligence (AAAI-16), Phoenix: Association for the Advancement of Artificial Intelligence.
  • Gong, M., Zhang, K., Liu, T., Tao, D., Glymour, C., Scholkopf, B. (2016). Domain Adaptation with Conditional Transferable Components. 33rd International Conference on Machine Learning (ICML 2016), New York: Journal of Machine Learning Research (JMLR).
  • Xiong, H., Liu, T., Tao, D., Shen, H. (2016). Dual Diversified Dynamical Gaussian Process Latent Variable Model for Video Repairing. IEEE Transactions on Image Processing, 25(8), 3626-3637. [More Information]
  • Xu, C., Liu, T., Tao, D., Xu, C. (2016). Local Rademacher Complexity for Multi-Label Learning. IEEE Transactions on Image Processing, 25(3), 1495-1507. [More Information]
  • Liu, T., Tao, D. (2016). On the performance of Manhattan nonnegative matrix factorization. IEEE Transactions on Neural Networks and Learning Systems, 27(9), 1851-1863. [More Information]
  • Gui, J., Liu, T., Tao, D., Sun, Z., Tan, T. (2016). Representative Vector Machines: A Unified Framework for Classical Classifiers. IEEE Transactions on Cybernetics, 46(8), 1877-1888. [More Information]
  • Liu, H., Wu, J., Liu, T., Tao, D., Fu, Y. (2016). Spectral Ensemble Clustering via Weighted K-means: Theoretical and Practical Evidence (Forthcoming). IEEE Transactions On Knowledge And Data Engineering, 23.
  • Gui, J., Liu, T., Sun, Z., Tao, D., Tan, T. (2016). Supervised Discrete Hashing with Relaxation (Forthcoming). IEEE Transactions on Neural Networks and Learning Systems, 23.
  • Li, X., Liu, T., Deng, J., Tao, D. (2016). Video face editing using temporal-spatial-smooth warping. ACM Transactions on Intelligent Systems and Technology, 7(3), 1-28. [More Information]

2015

  • Gong, C., Liu, T., Tao, D., Fu, K., Tu, E., Yang, J. (2015). Deformed Graph Laplacian for Semisupervised Learning. IEEE Transactions on Neural Networks and Learning Systems, 26(10), 2261-2274. [More Information]
  • Li, Y., Tian, X., Liu, T., Tao, D. (2015). Multi-task model and feature joint learning. 24th International Joint Conference on Artificial Intelligence (IJCAI 2015), Paolo Alto: AAAI Press.
  • Luo, Y., Liu, T., Tao, D., Xu, C. (2015). Multiview matrix completion for multilabel image classification. IEEE Transactions on Image Processing, 24(8), 2355-2368. [More Information]
  • Lu, Y., Xie, F., Liu, T., Jiang, Z., Tao, D. (2015). No Reference Quality Assessment for Multiply-Distorted Images Based on an Improved Bag-of-Words Model. IEEE Signal Processing Letters, 22(10), 1811-1815. [More Information]
  • Liu, H., Liu, T., Wu, J., Tao, D., Fu, Y. (2015). Spectral ensemble clustering. The 21st ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (KDD 2015), New York: Association for Computing Machinery (ACM). [More Information]

2014

  • Luo, Y., Liu, T., Tao, D., Xu, C. (2014). Decomposition-based transfer distance metric learning for image classification. IEEE Transactions on Image Processing, 23(9), 3789-3801. [More Information]
  • Shao, M., Li, S., Liu, T., Tao, D., Huang, T., Fu, Y. (2014). Learning relative features through adaptive pooling for image classification. 2014 IEEE International Conference on Multimedia and Expo Workshops (ICMEW 2014), Piscataway, New Jersey: IEEE. [More Information]
  • Liu, T., Tao, D. (2014). On the robustness and generalization of Cauchy regression. 2014 4th IEEE International Conference on Information Science and Technology (ICIST 2014), Piscataway: IEEE. [More Information]

For support on your academic profile contact .