Journals | - Wu, S., Zhou, T., Du, Y., Yu, J., Han, B., Liu, T. (2024). A Time-Consistency Curriculum for Learning from Instance-Dependent Noisy Labels. IEEE Transactions on Pattern Analysis and Machine Intelligence. [More Information]
- Zhang, J., Song, B., Wang, H., Han, B., Liu, T., Liu, L., Sugiyama, M. (2024). BadLabel: A Robust Perspective on Evaluating and Enhancing Label-Noise Learning. IEEE Transactions on Pattern Analysis and Machine Intelligence, 46(6), 4398-4409. [More Information]
- Li, M., Zhou, T., Han, B., Liu, T., Liang, X., Zhao, J., Gong, C. (2024). Class-wise Contrastive Prototype Learning for Semi-Supervised Classification under Intersectional Class Mismatch. IEEE Transactions on Multimedia. [More Information]
- Yang, E., Wang, Z., Shen, L., Yin, N., Liu, T., Guo, G., Wang, X., Tao, D. (2024). Continual Learning From a Stream of APIs. IEEE Transactions on Pattern Analysis and Machine Intelligence. [More Information]
- Fu, S., Ma, X., Zhan, Y., You, F., Peng, Q., Liu, T., Bailey, J., Mandic, D. (2024). Finding core labels for maximizing generalization of graph neural networks. Neural Networks, 180, 106635. [More Information]
- Yang, Y., Lin, C., Li, Q., Zhao, Z., Fan, H., Zhou, D., Wang, N., Liu, T., Shen, C. (2024). Quantization Aware Attack: Enhancing Transferable Adversarial Attacks by Model Quantization. IEEE Transactions on Information Forensics and Security. [More Information]
- Wang, J., Xia, X., Lan, L., Wu, X., Yu, J., Yang, W., Han, B., Liu, T. (2024). Tackling Noisy Labels With Network Parameter Additive Decomposition. IEEE Transactions on Pattern Analysis and Machine Intelligence. [More Information]
- Liu, L., Wang, N., Liu, D., Yang, X., Gao, X., Liu, T. (2024). Towards Specific Domain Prompt Learning Via Improved Text Label Optimization. IEEE Transactions on Multimedia. [More Information]
- Yang, S., Wu, S., Yang, E., Han, B., Liu, Y., Xu, M., Niu, G., Liu, T. (2023). A Parametrical Model for Instance-Dependent Label Noise. IEEE Transactions on Pattern Analysis and Machine Intelligence, 45(12), 14055-14068. [More Information]
- Li, X., Xia, X., Zhu, F., Liu, T., Zhang, X., Liu, C. (2023). Dynamics-aware loss for learning with label noise. Pattern Recognition, 144, 109835. [More Information]
- Xia, X., Han, B., Wang, N., Deng, J., Li, J., Mao, Y., Liu, T. (2023). Extended T: Learning With Mixed Closed-Set and Open-Set Noisy Labels. IEEE Transactions on Pattern Analysis and Machine Intelligence, 45(3), 3047-3058. [More Information]
- Zhang, J., Liu, T., Tao, D. (2023). Going Deeper, Generalizing Better: An Information-Theoretic View for Deep Learning. IEEE Transactions on Neural Networks and Learning Systems. [More Information]
- Guo, X., Liu, J., Liu, T., Yuan, Y. (2023). Handling Open-set Noise and Novel Target Recognition in Domain Adaptive Semantic Segmentation. IEEE Transactions on Pattern Analysis and Machine Intelligence, , 1-16. [More Information]
- Wang, T., Shen, L., Fan, Q., Xu, T., Liu, T., Xiong, H. (2023). Joint Admission Control and Resource Allocation of Virtual Network Embedding Via Hierarchical Deep Reinforcement Learning. IEEE Transactions on Services Computing, , 1-14. [More Information]
- Liu, C., Zhan, Y., Yu, B., Liu, L., Du, B., Hu, W., Liu, T. (2023). On exploring node-feature and graph-structure diversities for node drop graph pooling. Neural Networks, 167, 559-571. [More Information]
- Chan, A., Wu, S., Vernon, S., Tang, O., Figtree, G., Liu, T., Yang, J., Patrick, E. (2023). Overcoming cohort heterogeneity for the prediction of subclinical cardiovascular disease risk. iScience, 26(5), Article 106633 - 1-Article 106633 - 17. [More Information]
- Shen, J., Yao, Y., Huang, S., Wang, Z., Zhang, J., Wang, R., Yu, J., Liu, T. (2023). ProtoSimi: label correction for fine-grained visual categorization. Machine Learning. [More Information]
- Tian, J., Wu, X., Hsieh, M., Liu, T., Yang, W., Tao, D., Sun, X., Du, Y., Zhao, S., Liu, Q., Zhang, K., et al (2023). Recent Advances for Quantum Neural Networks in Generative Learning. IEEE Transactions on Pattern Analysis and Machine Intelligence, 45(10), 12321-12340. [More Information]
- Xia, X., Lu, P., Gong, C., Han, B., Yu, J., Yu, J., Liu, T. (2023). Regularly Truncated M-Estimators for Learning With Noisy Labels. IEEE Transactions on Pattern Analysis and Machine Intelligence. [More Information]
- Ma, J., Liu, J., Wang, Y., Li, J., Liu, T. (2023). Relation-Aware Fine-Grained Reasoning Network for Textbook Question Answering. IEEE Transactions on Neural Networks and Learning Systems, 34(1), 15-27. [More Information]
- Li, S., Liu, T., Tan, J., Zeng, D., Ge, S. (2023). Trustable Co-Label Learning From Multiple Noisy Annotators. IEEE Transactions on Multimedia, 25, 1045-1057. [More Information]
- Cai, S., Hong, S., Shen, J., Liu, T. (2022). A Machine Learning Approach for Predicting Human Preference for Graph Drawings. Journal of Graph Algorithms and Applications, 26(4), 447-470. [More Information]
- Cai, S., Hong, S., Xia, X., Liu, T., Huang, W. (2022). A machine learning approach for predicting human shortest path task performance. Visual Informatics, 6(2), 50-61. [More Information]
- Yang, S., Wu, S., Liu, T., Xu, M. (2022). Bridging the Gap Between Few-Shot and Many-Shot Learning via Distribution Calibration. IEEE Transactions on Pattern Analysis and Machine Intelligence, 44(12), 9830-9843. [More Information]
- Bao, G., Chen, H., Liu, T., Gong, G., Yin, Y., Wang, L., Wang, X. (2022). COVID-MTL: Multitask learning with Shift3D and random-weighted loss for COVID-19 diagnosis and severity assessment. Pattern Recognition, 124, 108499. [More Information]
- Yin, X., Du, Y., Fei, Y., Zhang, R., Liu, L., Mao, Y., Liu, T., Hsieh, M., Li, L., Liu, N., Tao, D., et al (2022). Efficient Bipartite Entanglement Detection Scheme with a Quantum Adversarial Solver. Physical Review Letters, 128(11). [More Information]
- Ding, X., Wang, N., Zhang, S., Huang, Z., Li, X., Tang, M., Liu, T., Gao, X. (2022). Exploring Language Hierarchy for Video Grounding. IEEE Transactions on Image Processing, 31, 4693-4706. [More Information]
- Yang, X., Deng, C., Liu, T., Tao, D. (2022). Heterogeneous Graph Attention Network for Unsupervised Multiple-Target Domain Adaptation. IEEE Transactions on Pattern Analysis and Machine Intelligence, 44(4), 1992-2003. [More Information]
- Ju, L., Wang, X., Wang, L., Mahapatra, D., Zhao, X., Zhou, Q., Liu, T., Ge, Z. (2022). Improving Medical Images Classification with Label Noise Using Dual-Uncertainty Estimation. IEEE Transactions on Medical Imaging, 41(6), 1533-1546. [More Information]
- Lan, L., Liu, T., Zhang, X., Xu, C., Luo, Z. (2022). Label Propagated Nonnegative Matrix Factorization for Clustering. IEEE Transactions On Knowledge And Data Engineering, 34(1), 340-351. [More Information]
- Wu, S., Liu, T., Han, B., Yu, J., Niu, G., Sugiyama, M. (2022). Learning from Noisy Pairwise Similarity and Unlabeled Data. Journal of Machine Learning Research, 23.
- Wu, Z., Xia, X., Wang, R., Li, J., Yu, J., Mao, Y., Liu, T. (2022). LR-SVM+: Learning Using Privileged Information with Noisy Labels. IEEE Transactions on Multimedia, 24, 1080-1092. [More Information]
- Zhang, J., Liu, T., Tao, D. (2022). On the Rates of Convergence From Surrogate Risk Minimizers to the Bayes Optimal Classifier. IEEE Transactions on Neural Networks and Learning Systems, 33(10), 5766-5774. [More Information]
- Du, Y., Hsieh, M., Liu, T., You, S., Tao, D. (2022). Quantum Differentially Private Sparse Regression Learning. IEEE Transactions on Information Theory, 68(8), 5217-5233. [More Information]
- Wang, H., Deng, C., Liu, T., Tao, D. (2022). Transferable Coupled Network for Zero-Shot Sketch-Based Image Retrieval. IEEE Transactions on Pattern Analysis and Machine Intelligence, 44(12), 9181-9194. [More Information]
- Zhang, Z., Li, M., Xie, H., Yu, J., Liu, T., Chen, C. (2022). TWGAN: Twin Discriminator Generative Adversarial Networks. IEEE Transactions on Multimedia, 24, 677-688. [More Information]
- He, S., Wang, R., Liu, T., Yi, C., Jin, X., Liu, R., Zhou, W. (2022). Type-I Generative Adversarial Attack. IEEE Transactions on Dependable and Secure Computing. [More Information]
- Pan, J., Chen, Z., He, Y., Liu, T., Cheng, X., Xiao, J., Feng, H. (2022). Why Controlling the Asymptomatic Infection Is Important: A Modelling Study with Stability and Sensitivity Analysis. Fractal and Fractional, 6(4). [More Information]
- Du, Y., Hsieh, M., Liu, T., Tao, D. (2021). A Grover-search based quantum learning scheme for classification. New Journal of Physics, 23(2), 23020. [More Information]
- Chen, Z., Ouyang, W., Liu, T., Tao, D. (2021). A Shape Transformation-based Dataset Augmentation Framework for Pedestrian Detection. International Journal of Computer Vision, 129(4), 1121-1138. [More Information]
- Zhang, J., Liu, T., Tao, D. (2021). An Optimal Transport Analysis on Generalization in Deep Learning. IEEE Transactions on Neural Networks and Learning Systems. [More Information]
- Huang, H., Du, Y., Gong, M., Zhao, Y., Wu, Y., Wang, C., Li, S., Liang, F., Lin, J., Xu, Y., Liu, T., Tao, D., et al (2021). Experimental Quantum Generative Adversarial Networks for Image Generation. Physical Review Applied, 16(2), 24051. [More Information]
- Shao, J., Du, B., Wu, C., Gong, M., Liu, T. (2021). HRSiam: High-Resolution Siamese Network, towards Space-Borne Satellite Video Tracking. IEEE Transactions on Image Processing, 30, 3056-3068. [More Information]
- Gong, C., Wang, Q., Liu, T., Han, B., You, J., Yang, J., Tao, D. (2021). Instance-Dependent Positive and Unlabeled Learning with Labeling Bias Estimation. IEEE Transactions on Pattern Analysis and Machine Intelligence, 44(8), 4163-4177. [More Information]
- Ding, X., Wang, N., Gao, X., Li, J., Wang, X., Liu, T. (2021). KFC: An Efficient Framework for Semi-Supervised Temporal Action Localization. IEEE Transactions on Image Processing, 30, 6869-6878. [More Information]
- Ke, J., Gong, C., Liu, T., Zhao, L., Yang, J., Tao, D. (2021). Laplacian Welsch Regularization for Robust Semisupervised Learning. IEEE Transactions on Cybernetics, 52(1), 164-177. [More Information]
- Du, Y., Hsieh, M., Liu, T., You, S., Tao, D. (2021). Learnability of Quantum Neural Networks. PRX QUANTUM, 2(4), 40337. [More Information]
- Gong, C., Shi, H., Liu, T., Zhang, C., Yang, J., Tao, D. (2021). Loss Decomposition and Centroid Estimation for Positive and Unlabeled Learning. IEEE Transactions on Pattern Analysis and Machine Intelligence, 43(3), 918-932. [More Information]
- Li, S., Jia, K., Wen, Y., Liu, T., Tao, D. (2021). Orthogonal Deep Neural Networks. IEEE Transactions on Pattern Analysis and Machine Intelligence, 43(4), 1352-1368. [More Information]
- Du, Y., Hsieh, M., Liu, T., Tao, D., Liu, N. (2021). Quantum noise protects quantum classifiers against adversaries. Physical Review Research, 3(2), 23153. [More Information]
- Yao, Y., Yu, B., Gong, C., Liu, T. (2021). Understanding How Pretraining Regularizes Deep Learning Algorithms. IEEE Transactions on Neural Networks and Learning Systems. [More Information]
- Liu, X., Wang, L., Zhu, X., Li, M., Zhu, E., Liu, T., Liu, L., Dou, Y., Yin, J. (2020). Absent Multiple Kernel Learning Algorithms. IEEE Transactions on Pattern Analysis and Machine Intelligence, 42(6), 1303-1316. [More Information]
- Yang, E., Liu, T., Deng, C., Tao, D. (2020). Adversarial Examples for Hamming Space Search. IEEE Transactions on Cybernetics, 50(4), 1473-1484. [More Information]
- Du, Y., Hsieh, M., Liu, T., Tao, D. (2020). Expressive power of parametrized quantum circuits. Physical Review Research, 2(3), 33125. [More Information]
- Ding, X., Wang, N., Gao, X., Li, J., Wang, X., Liu, T. (2020). Group Feedback Capsule Network. IEEE Transactions on Image Processing, 29, 6789-6799. [More Information]
- Wei, Y., Gong, C., Chen, S., Liu, T., Yang, J., Tao, D. (2020). Harnessing Side Information for Classification under Label Noise. IEEE Transactions on Neural Networks and Learning Systems, 31(9), 3178-3192. [More Information]
- Liu, X., Zhu, X., Li, M., Wang, L., Zhu, E., Liu, T., Kloft, M., Shen, D., Yin, J., Gao, W. (2020). Multiple Kernel k-Means with Incomplete Kernels. IEEE Transactions on Pattern Analysis and Machine Intelligence, 42(5), 1191-1204. [More Information]
- Du, Y., Hsieh, M., Liu, T., Tao, D. (2020). Quantum-inspired algorithm for general minimum conical hull problems. Physical Review Research, 2(3), 33199. [More Information]
- Lou, Y., Duan, L., Luo, Y., Chen, Z., Liu, T., Wang, S., Gao, W. (2020). Towards Efficient Front-End Visual Sensing for Digital Retina: A Model-Centric Paradigm. IEEE Transactions on Multimedia, 22(11), 3002-3013. [More Information]
- Deng, C., Yang, E., Liu, T., Tao, D. (2020). Two-Stream Deep Hashing with Class-Specific Centers for Supervised Image Search. IEEE Transactions on Neural Networks and Learning Systems, 31(6), 2189-2201. [More Information]
- He, F., Liu, T., Tao, D. (2020). Why ResNet Works? Residuals Generalize. IEEE Transactions on Neural Networks and Learning Systems, 31(12), 5349-5362. [More Information]
- Lei, T., Jia, X., Liu, T., Liu, S., Meng, H., Nandi, A. (2019). Adaptive Morphological Reconstruction for Seeded Image Segmentation. IEEE Transactions on Image Processing, 28(11), 5510-5523. [More Information]
- Tian, X., Li, Y., Liu, T., Wang, X., Tao, D. (2019). Eigenfunction-Based Multitask Learning in a Reproducing Kernel Hilbert Space. IEEE Transactions on Neural Networks and Learning Systems, 30(6), 1818-1830. [More Information]
- Wang, Q., Yu, J., Liu, T., Liu, W. (2019). Guest editorial: Visual domain adaptation and generalisation. IET Computer Vision, 13(2), 87-89. [More Information]
- Gong, C., Liu, T., Yang, J., Tao, D. (2019). Large-Margin Label-Calibrated Support Vector Machines for Positive and Unlabeled Learning. IEEE Transactions on Neural Networks and Learning Systems, 30(11), 3471-3483. [More Information]
- Luo, Y., Wen, Y., Liu, T., Tao, D. (2019). Transferring Knowledge Fragments for Learning Distance Metric from A Heterogeneous Domain. IEEE Transactions on Pattern Analysis and Machine Intelligence, 41(4), 1013-1026. [More Information]
- Guan, N., Liu, T., Zhang, Y., Tao, D., Davis, L. (2019). Truncated Cauchy Non-negative Matrix Factorization for Robust Subspace Learning. IEEE Transactions on Pattern Analysis and Machine Intelligence, 41(1), 246-259. [More Information]
- Deng, C., Yang, E., Liu, T., Li, J., Liu, W., Tao, D. (2019). Unsupervised Semantic-Preserving Adversarial Hashing for Image Search. IEEE Transactions on Image Processing, 28(8), 4032-4044. [More Information]
- Gong, C., Liu, T., Tang, Y., Yang, J., Yang, J., Tao, D. (2018). A Regularization Approach for Instance-Based Superset Label Learning. IEEE Transactions on Cybernetics, 48(3), 967-978. [More Information]
- Shen, X., Tian, X., Liu, T., Xu, F., Tao, D. (2018). Continuous Dropout. IEEE Transactions on Neural Networks and Learning Systems, 29(9), 3926-3937. [More Information]
- Ma, K., Fu, H., Liu, T., Wang, Z., Tao, D. (2018). Deep Blur Mapping: Exploiting High-Level Semantics by Deep Neural Networks. IEEE Transactions on Image Processing, 27(10), 5155-5166. [More Information]
- Gui, J., Liu, T., Sun, Z., Tao, D., Tan, T. (2018). Fast Supervised Discrete Hashing. IEEE Transactions on Pattern Analysis and Machine Intelligence, 40(2), 490-496. [More Information]
- Wang, R., Liu, T., Tao, D. (2018). Multiclass Learning with Partially Corrupted Labels. IEEE Transactions on Neural Networks and Learning Systems, 29(6), 2568-2580. [More Information]
- Li, Y., Tian, X., Liu, T., Tao, D. (2018). On better exploring and exploiting task relationships in multitask learning: Joint model and feature learning. IEEE Transactions on Neural Networks and Learning Systems, 29(5), 1975-1985. [More Information]
- Gui, J., Liu, T., Sun, Z., Tao, D., Tan, T. (2018). Supervised Discrete Hashing with Relaxation. IEEE Transactions on Neural Networks and Learning Systems, 29(3), 608-617. [More Information]
- Liu, T., Tao, D., Song, M., Maybank, S. (2017). Algorithm-Dependent Generalization Bounds for Multi-Task Learning. IEEE Transactions on Pattern Analysis and Machine Intelligence, 39(2), 227-241. [More Information]
- Ma, K., Liu, W., Liu, T., Wang, Z., Tao, D. (2017). dipIQ: Blind Image Quality Assessment by Learning-to-Rank Discriminable Image Pairs. IEEE Transactions on Image Processing, 26(8), 3951-3964. [More Information]
- Liu, Q., Sun, Y., Wang, C., Liu, T., Tao, D. (2017). Elastic net hypergraph learning for image clustering and semi-supervised classification. IEEE Transactions on Image Processing, 26(1), 452-463. [More Information]
- Zhang, Y., Du, B., Zhang, L., Liu, T. (2017). Joint Sparse Representation and Multitask Learning for Hyperspectral Target Detection. IEEE Transactions on Geoscience and Remote Sensing, 55(2), 894-906. [More Information]
- Liu, T., Gong, M., Tao, D. (2017). Large-Cone Nonnegative Matrix Factorization. IEEE Transactions on Neural Networks and Learning Systems, 28(9), 2129-2142. [More Information]
- Liu, H., Wu, J., Liu, T., Tao, D., Fu, Y. (2017). Spectral Ensemble Clustering via Weighted K-means: Theoretical and Practical Evidence. IEEE Transactions On Knowledge And Data Engineering, 29(5), 1129-1143. [More Information]
- Liu, T., Tao, D. (2016). Classification with Noisy Labels by Importance Reweighting. IEEE Transactions on Pattern Analysis and Machine Intelligence, 38(3), 447-461. [More Information]
- Liu, T., Tao, D., Xu, D. (2016). Dimensionality-Dependent Generalization Bounds for k-Dimensional Coding Schemes. Neural Computation, 28(10), 2213-2249. [More Information]
- Xiong, H., Liu, T., Tao, D., Shen, H. (2016). Dual Diversified Dynamical Gaussian Process Latent Variable Model for Video Repairing. IEEE Transactions on Image Processing, 25(8), 3626-3637. [More Information]
- Xu, C., Liu, T., Tao, D., Xu, C. (2016). Local Rademacher Complexity for Multi-Label Learning. IEEE Transactions on Image Processing, 25(3), 1495-1507. [More Information]
- Liu, T., Tao, D. (2016). On the performance of Manhattan nonnegative matrix factorization. IEEE Transactions on Neural Networks and Learning Systems, 27(9), 1851-1863. [More Information]
- Gui, J., Liu, T., Tao, D., Sun, Z., Tan, T. (2016). Representative Vector Machines: A Unified Framework for Classical Classifiers. IEEE Transactions on Cybernetics, 46(8), 1877-1888. [More Information]
- Li, X., Liu, T., Deng, J., Tao, D. (2016). Video face editing using temporal-spatial-smooth warping. ACM Transactions on Intelligent Systems and Technology, 7(3), 1-28. [More Information]
- Gong, C., Liu, T., Tao, D., Fu, K., Tu, E., Yang, J. (2015). Deformed Graph Laplacian for Semisupervised Learning. IEEE Transactions on Neural Networks and Learning Systems, 26(10), 2261-2274. [More Information]
- Luo, Y., Liu, T., Tao, D., Xu, C. (2015). Multiview matrix completion for multilabel image classification. IEEE Transactions on Image Processing, 24(8), 2355-2368. [More Information]
- Lu, Y., Xie, F., Liu, T., Jiang, Z., Tao, D. (2015). No Reference Quality Assessment for Multiply-Distorted Images Based on an Improved Bag-of-Words Model. IEEE Signal Processing Letters, 22(10), 1811-1815. [More Information]
- Luo, Y., Liu, T., Tao, D., Xu, C. (2014). Decomposition-based transfer distance metric learning for image classification. IEEE Transactions on Image Processing, 23(9), 3789-3801. [More Information]
|
Conferences | - Zhou, D., Wang, N., Yang, H., Gao, X., Liu, T. (2023). Phase-aware Adversarial Defense for Improving Adversarial Robustness. 40th International Conference on Machine Learning, ICML 2023, NA: ML Research Press.
- Kim, J., Liu, T., Yacef, K. (2022). Improving Supervised Learning in Conversational Analysis through Reusing Preprocessing Data as Auxiliary Supervisors. ACM International Conference Proceeding Series, : SPIE.
- An,, X., Deng,, J., Guo,, J., Feng,, Z., Zhu,, X., Yang,, J., Liu, T. (2022). Killing Two Birds with One Stone: Efficient and Robust Training of Face Recognition CNNs by Partial FC. Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, : IEEE Computer Society.
- Sugiyama,, M., Liu, T., Han,, B., Liu,, Y., Niu,, G. (2022). Learning and Mining with Noisy Labels. International Conference on Information and Knowledge Management, Proceedings, : Springer Verlag.
- Yang,, E., Yao,, D., Liu, T., Deng,, C. (2022). Mutual Quantization for Cross-Modal Search with Noisy Labels. Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, : IEEE Computer Society.
- Luo,, Y., Duan,, L., Bai,, Y., Liu, T., Lou,, Y., Wen,, Y. (2022). Nonlinear Multi-Model Reuse. 2022 IEEE 24th International Workshop on Multimedia Signal Processing, MMSP 2022, : Institute of Electrical and Electronics Engineers Inc.
- Xia, X., Shan,, S., Gong,, M., Wang,, N., Gao,, F., Wei,, H., Liu, T. (2022). Sample-Efficient Kernel Mean Estimator with Marginalized Corrupted Data. Proceedings of the ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, : Springer Verlag.
- Li,, S., Xia, X., Ge,, S., Liu, T. (2022). Selective-Supervised Contrastive Learning with Noisy Labels. Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, : IEEE Computer Society.
- Guo,, X., Liu,, J., Liu, T., Yuan,, Y. (2022). SimT: Handling Open-set Noise for Domain Adaptive Semantic Segmentation. Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, : IEEE Computer Society.
- Pasdar,, A., Lee,, Y., Liu, T., Hong, S. (2022). Train Me to Fight: Machine-Learning Based On-Device Malware Detection for Mobile Devices. Proceedings - 22nd IEEE/ACM International Symposium on Cluster, Cloud and Internet Computing, CCGrid 2022, : Springer Verlag.
- Cai, S., Hong, S., Shen, J., Liu, T. (2021). A Machine Learning Approach for Predicting Human Preference for Graph Layouts. 14th IEEE Pacific Visualization Symposium (PacificVis 2021), Piscataway: Institute of Electrical and Electronics Engineers (IEEE). [More Information]
- Zhu, Z., Liu, T., Liu, Y. (2021). A Second-Order Approach to Learning with Instance-Dependent Label Noise. 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR 2021), Piscataway: Institute of Electrical and Electronics Engineers (IEEE). [More Information]
- Yu, J., Hao, X., Cui, Z., He, P., Liu, T. (2021). Boosting Fairness for Masked Face Recognition. 18th IEEE/CVF International Conference on Computer Vision Workshops, ICCVW 2021, Piscataway: Institute of Electrical and Electronics Engineers (IEEE). [More Information]
- Dong,, J., Fang,, Z., Liu,, A., Sun,, G., Liu, T. (2021). Confident-Anchor-Induced Multi-Source-Free Domain Adaptation. NeurIPS 2021, Virtual, Online: Springer Science and Business Media Deutschland GmbH.
- Yao, Y., Liu, T., Gong,, M., Han,, B., Niu,, G., Zhang,, K. (2021). Instance-Dependent Label-Noise Learning under Structural Causal Models. NeurIPS 2021, Virtual, Online: Springer Science and Business Media Deutschland GmbH.
- Wang, Q., Yao, J., Gong, C., Liu, T., Gong, M., Yang, H., Han, B. (2021). Learning with Group Noise. Thirty-Fifth AAAI Conference on Artificial Intelligence (AAAI-21), Palo Alto, California: AAAI Press.
- Wang,, Q., Liu,, F., Han,, B., Liu, T., Gong,, C., Niu,, G., Zhou,, M., Sugiyama,, M. (2021). Probabilistic Margins for Instance Reweighting in Adversarial Training. NeurIPS 2021, Virtual, Online: Springer Science and Business Media Deutschland GmbH.
- Ju, L., Wang, X., Wang, L., Liu, T., Zhao, X., Drummond, T., Mahapatra, D., Ge, Z. (2021). Relational Subsets Knowledge Distillation for Long-Tailed Retinal Diseases Recognition. 24th International Conference on Medical Image Computing and Computer Assisted Intervention (MICCAI 2021), Cham: Springer Nature. [More Information]
- Zhou,, D., Wang,, N., Peng,, C., Gao,, X., Wang,, X., Yu,, J., Liu, T. (2021). Removing Adversarial Noise in Class Activation Feature Space. 18th IEEE/CVF International Conference on Computer Vision (ICCV 2021), : Springer International Publishing AG.
- Huang, Z., Shen, X., Xing, J., Liu, T., Tian, X., Li, H., Deng, B., Huang, J., Hua, X. (2021). Revisiting Knowledge Distillation: An Inheritance and Exploration Framework. 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR 2021), Piscataway: Institute of Electrical and Electronics Engineers (IEEE). [More Information]
- He, J., Khushi, M., Tran, N., Liu, T. (2021). Robust Dual Recurrent Neural Networks for Financial Time Series Prediction. SIAM International Conference on Data Mining (SDM21), Philadelphia, PA: Society for Industrial and Applied Mathematics (SIAM). [More Information]
- Xia, X., Liu, T., Han, B., Gong, C., Wang, N., Ge, Z., Chang, Y. (2021). ROBUST EARLY-LEARNING: HINDERING THEMEMORIZATION OF NOISY LABELS. The Ninth International Conference on Learning Representations (ICLR 2021), La Jolla, CA: International Conference on Representation Learning (ICLR). [More Information]
- Xia, X., Liu, T., Han, B., Gong, C., Wang, N., Ge, Z., Chang, Y. (2021). Robust early-learning: Hindering the memorization of noisy labels. The Ninth International Conference on Learning Representations (ICLR 2021), La Jolla, CA: International Conference on Representation Learning (ICLR).
- Furusho, Y., Liu, T., Ikeda, K. (2021). Skipping Two Layers in ResNet Makes the Generalization Gap Smaller than Skipping One or No Layer. 2019 INNS Big Data and Deep Learning (INNS BDDL) international conference, Switzerland: Springer Cham.
- Wang, Q., Han, B., Liu, T., Niu, G., Yang, J., Gong, C. (2021). Tackling Instance-Dependent Label Noise via a Universal Probabilistic Model. Thirty-Fifth AAAI Conference on Artificial Intelligence (AAAI-21), Palo Alto, California: AAAI Press.
- Gan, S., Luo, Y., Wen, Y., Liu, T., Hu, H. (2020). Deep Heterogeneous Multi-Task Metric Learning for Visual Recognition and Retrieval. 28th ACM Multimedia Conference (MM 2020), New York: Association for Computing Machinery (ACM). [More Information]
- Qiao, M., Yu, J., Liu, T., Wang, X., Tao, D. (2020). Diversified Bayesian Nonnegative Matrix Factorization. The Thirty-Fourth AAAI Conference on Artificial Intelligence (AAAI-20), Palo Alto: AAAI Press. [More Information]
- Zhao, S., Gong, M., Liu, T., Fu, H., Tao, D. (2020). Domain generalization via entropy regularization. 34th Conference on Neural Information Processing Systems (NeurIPS 2020), San Diego: Neural Information Processing Systems (NIPS).
- Yao, Y., Liu, T., Han, B., Gong, M., Deng, J., Niu, G., Sugiyama, M. (2020). Dual T: Reducing Estimation Error for Transition Matrix in Label-noise Learning. 34th Conference on Neural Information Processing Systems (NeurIPS 2020), San Diego: Neural Information Processing Systems (NIPS).
- Yao, Y., Liu, T., Han, B., Gong, M., Deng, J., Niu, G., Sugiyama, M. (2020). Dual T: Reducing Estimation Error for Transition Matrix in Label-noise Learning. 34th Conference on Neural Information Processing Systems (NeurIPS 2020), San Diego: Neural Information Processing Systems (NIPS). [More Information]
- Zhang, Y., Li, Y., Liu, T., Tian, X. (2020). Dual-Path Distillation: A Unified Framework to Improve Black-Box Attacks. 37th International Conference on Machine Learning (ICML 2020), Vienna: International Machine Learning Society.
- Xu, Y., Gong, M., Chen, J., Liu, T., Zhang, K., Batmanghelich, K. (2020). Generative-Discriminative Complementary Learning. The Thirty-Fourth AAAI Conference on Artificial Intelligence (AAAI-20), Palo Alto: AAAI Press. [More Information]
- Yu, X., Liu, T., Gong, M., Zhang, K., Batmanghelich, K., Tao, D. (2020). Label-noise robust domain adaptation. 37th International Conference on Machine Learning (ICML 2020), Vienna: International Machine Learning Society.
- Cheng, J., Liu, T., Ramamohanarao, K., Tao, D. (2020). Learning with Bounded Instance- and Label-dependent Label Noise. 37th International Conference on Machine Learning (ICML 2020), Vienna: International Machine Learning Society.
- Guo, J., Gong, M., Liu, T., Zhang, K., Tao, D. (2020). LTF: A Label Transformation Framework for Correcting Target Shift. 37th International Conference on Machine Learning (ICML 2020), Vienna: International Machine Learning Society.
- Xia, X., Liu, T., Han, B., Wang, N., Gong, M., Liu, H., Niu, G., Tao, D., Sugiyama, M. (2020). Part-dependent Label Noise: Towards Instance-dependent Label Noise. 34th Conference on Neural Information Processing Systems (NeurIPS 2020), San Diego: Neural Information Processing Systems (NIPS).
- Xia, X., Liu, T., Han, B., Wang, N., Gong, M., Liu, H., Niu, G., Tao, D., Sugiyama, M. (2020). Part-dependent Label Noise:Towards Instance-dependent Label Noise. 34th Conference on Neural Information Processing Systems (NeurIPS 2020), San Diego: Neural Information Processing Systems (NIPS). [More Information]
- Deng, J., Guo, J., Liu, T., Gong, M., Zafeiriou, S. (2020). Sub-center ArcFace: Boosting Face Recognition by Large-Scale Noisy Web Faces. 16th European Conference on Computer Vision (ECCV 2020), Cham: Springer. [More Information]
- Xia, X., Liu, T., Wang, N., Han, B., Gong, C., Niu, G., Sugiyma, M. (2019). Are Anchor Points Really Indispensable in Label-Noise Learning. 33th Conference on Neural Information Processing Systems (NeurIPS 2019), Canada: Neural Information Processing Systems Foundation.
- He, F., Liu, T., Tao, D. (2019). Control Batch Size and Learning Rate to Generalize Well: Theoretical and Empirical Evidence. 33th Conference on Neural Information Processing Systems (NeurIPS 2019), Canada: Neural Information Processing Systems Foundation.
- Yang, E., Liu, T., Deng, C., Liu, W., Tao, D. (2019). DistillHash: Unsupervised Deep Hashing by Distilling Data Pairs. 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR 2019), Piscataway: Institute of Electrical and Electronics Engineers (IEEE). [More Information]
- Zhang, C., Ren, D., Liu, T., Yang, J., Gong, C. (2019). Positive and Unlabeled Learning with Label Disambiguation. 28th International Joint Conference on Artificial Intelligence (IJCAI 2019), Macao: International Joint Conferences on Artificial Intelligence. [More Information]
- Xu, Y., Gong, M., Liu, T., Batmanghelich, K., Wang, C. (2019). Robust Angular Local Descriptor Learning. 14th Asian Conference on Computer Vision (ACCV 2018), Cham: Springer. [More Information]
- Lou, Y., Duan, L., Luo, Y., Chen, Z., Liu, T., Wang, S., Gao, W. (2019). Towards digital retina in smart cities: A model generation, utilization and communication paradigm. 2019 IEEE International Conference on Multimedia and Expo (ICME 2019), Piscataway: Institute of Electrical and Electronics Engineers (IEEE). [More Information]
- Yu, X., Liu, T., Gong, M., Batmanghelich, K., Tao, D. (2018). An Efficient and Provable Approach for Mixture Proportion Estimation Using Linear Independence Assumption. IEEE Conference on Computer Vision and Pattern Recognition (CVPR 2018), Salt Lake City, Utah: Institute of Electrical and Electronics Engineers (IEEE). [More Information]
- Yu, B., Liu, T., Gong, M., Ding, C., Tao, D. (2018). Correcting the triplet selection bias for triplet loss. 15th European Conference on Computer Vision (ECCV2018), Cham: Springer. [More Information]
- Li, Y., Tian, X., Gong, M., Liu, Y., Liu, T., Zhang, K., Tao, D. (2018). Deep domain generalization via conditional invariant adversarial networks. 15 th European Conference on Computer Vision ECCV 2018, Cham: Springer. [More Information]
- Li, Y., Gong, M., Tian, X., Liu, T., Tao, D. (2018). Domain Generalization via Conditional Invariant Representations. The Thirty-Second AAAI Conference on Artificial Intelligence (AAAI-18), Palo Alto: AAAI Press.
- Yu, X., Liu, T., Gong, M., Tao, D. (2018). Learning with Biased Complementary Labels. 15th European Conference on Computer Vision ECCV 2018, Cham: Springer. [More Information]
- Luo, Y., Liu, T., Wen, Y., Tao, D. (2018). Online heterogeneous transfer metric learning. 27th International Joint Conference on Artificial Intelligence (IJCAI 2018), Stockholm: International Joint Conferences on Artificial Intelligence. [More Information]
- Du, Y., Liu, T., Li, Y., Duan, R., Tao, D. (2018). Quantum divide-and-conquer anchoring for separable non-negative matrix factorization. 27th International Joint Conference on Artificial Intelligence (IJCAI 2018), Stockholm: International Joint Conferences on Artificial Intelligence. [More Information]
- Yang, E., Deng, C., Liu, T., Liu, W., Tao, D. (2018). Semantic structure-based unsupervised deep hashing. 27th International Joint Conference on Artificial Intelligence (IJCAI 2018), Stockholm: International Joint Conferences on Artificial Intelligence. [More Information]
- Liu, T., Lugosi, G., Neu, G., Tao, D. (2017). Algorithmic stability and hypothesis complexity. The 34th International Conference on Machine Learning, (ICML 2017), online: Proceedings of Machine Learning Research.
- Luo, Y., Wen, Y., Liu, T., Tao, D. (2017). General Heterogeneous Transfer Distance Metric Learning via Knowledge Fragments Transfer. 26th International Joint Conference on Artificial Intelligence (IJCAI 2017), Melbourne: International Joint Conferences on Artificial Intelligence. [More Information]
- Yu, X., Liu, T., Wang, X., Tao, D. (2017). On Compressing Deep Models by Low Rank and Sparse Decomposition. 30th IEEE Conference on Computer Vision and Pattern Recognition (CVPR 2017), Honolulu: Institute of Electrical and Electronics Engineers (IEEE). [More Information]
- Liu, T., Yang, Q., Tao, D. (2017). Understanding How Feature Structure Transfers in Transfer Learning. 26th International Joint Conference on Artificial Intelligence (IJCAI 2017), Melbourne: International Joint Conferences on Artificial Intelligence. [More Information]
- Xiong, H., Liu, T., Tao, D. (2016). Diversified Dynamical Gaussian Process Latent Variable Model for Video Repair. 30th AAAI Conference on Artificial Intelligence (AAAI 2016), United States: AAAI Press.
- Gong, M., Zhang, K., Liu, T., Tao, D., Glymour, C., Scholkopf, B. (2016). Domain Adaptation with Conditional Transferable Components. 33rd International Conference on Machine Learning (ICML 2016), Stroudsburg: International Machine Learning Society.
- Li, Y., Tian, X., Liu, T., Tao, D. (2015). Multi-task model and feature joint learning. 24th International Joint Conference on Artificial Intelligence (IJCAI 2015), Buenos Aires: AAAI Press.
- Liu, H., Liu, T., Wu, J., Tao, D., Fu, Y. (2015). Spectral ensemble clustering. The 21st ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (KDD 2015), New York: Association for Computing Machinery (ACM). [More Information]
- Shao, M., Li, S., Liu, T., Tao, D., Huang, T., Fu, Y. (2014). Learning relative features through adaptive pooling for image classification. 2014 IEEE International Conference on Multimedia and Expo Workshops (ICMEW 2014), Piscataway, New Jersey: Institute of Electrical and Electronics Engineers (IEEE). [More Information]
- Liu, T., Tao, D. (2014). On the robustness and generalization of Cauchy regression. 2014 4th IEEE International Conference on Information Science and Technology (ICIST 2014), Piscataway: Institute of Electrical and Electronics Engineers (IEEE). [More Information]
|