People_
Associate Professor Minh-Ngoc Tran
Senior Lecturer
Phone
+61 2 8627 4752
Websites
Minh-Ngoc’s main research interests lie in Bayesian methodology and statistical machine learning. He specialises in fast Variational Bayes and simulation-based methods, such as importance sampling and sequential Monte Carlo, for estimating complex models with Big Data, and in Lasso-type variable selection methods.
show more
- BUSS1020 Quantitative Business Analysis
- BUSS6002 Data Science in Business
- BUSS7904 Advanced Analysis for Research
- QBUS3820 Data Mining and Data Analysis
- QBUS3830 Advanced Analytics
- QBUS5001 Quantitative Methods for Business
- QBUS6840 Predictive Analytics
Project title | Research student |
---|---|
Optimization on the space of probability measures | Peiwen JIANG |
Deep learning in Financial Time Series Forecasting | Chen LIU |
Research on the Explainability of Machine Learning and Artificial Intelligence in Business Analytics | Hongwei MA |
Research on Financial Risk Management Based on Financial Technology | Haoyuan WANG |
Selected publications
Publications
Expand all
Books
- Tran, M., Antic, A., Hassani-Mahmooei, B., Ozmen, M. (2021). Data Analytics and Insights. Melbourne, Australia: Wiley. [More Information]
Journals
- Liu, C., Wang, C., Tran, M., Kohn, R. (2025). A long short-term memory enhanced realized conditional heteroskedasticity model. Economic Modelling, 142, 106922. [More Information]
- Gunawan, D., Kohn, R., Tran, M. (2025). Flexible and Robust Particle Tempering for State Space Models. Econometrics and Statistics, 33, 35-55. [More Information]
- Lopatnikova, A., Tran, M., Sisson, S. (2024). An Introduction to Quantum Computing for Statisticians and Data Scientists. Foundations of Data Science, 6(3), 278-307. [More Information]
show 49 more
Conferences
- Lopatnikova, A., Tran, M. (2023). Quantum Variational Bayes on Manifolds. 2023 IEEE International Conference on Acoustics, Speech, and Signal Processing (ICASSP), United States: Institute of Electrical and Electronics Engineers (IEEE). [More Information]
- Jie, R., Gao, J., Vasnev, A., Tran, M. (2021). Regularized flexible activation function combination for deep neural networks. 25th International Conference on Pattern Recognition, ICPR 2020, Piscataway, New Jersey: Institute of Electrical and Electronics Engineers (IEEE). [More Information]
- Salomone, R., Quiroz, M., Kohn, R., Villani, M., Tran, M. (2020). Spectral Subsampling MCMC for Stationary Time Series. 37th International Conference on Machine Learning (ICML 2020), Vienna: International Machine Learning Society.
show 2 more
Expand all
2025
- Liu, C., Wang, C., Tran, M., Kohn, R. (2025). A long short-term memory enhanced realized conditional heteroskedasticity model. Economic Modelling, 142, 106922. [More Information]
- Gunawan, D., Kohn, R., Tran, M. (2025). Flexible and Robust Particle Tempering for State Space Models. Econometrics and Statistics, 33, 35-55. [More Information]
2024
- Lopatnikova, A., Tran, M., Sisson, S. (2024). An Introduction to Quantum Computing for Statisticians and Data Scientists. Foundations of Data Science, 6(3), 278-307. [More Information]
- Dao, V., Gunawan, D., Kohn, R., Tran, M., Hawkins, G., Brown, S. (2024). Bayesian Inference for Evidence Accumulation Models with Regressors. Psychological Methods, in press. [More Information]
- Nguyen, H., Nguyen, H., Tran, M. (2024). Deep learning enhanced volatility modeling with covariates. Finance Research Letters, 69, 106145. [More Information]
show 5 more
2023
- Nguyen, H., Nguyen, N., Tran, M. (2023). A dynamic leverage stochastic volatility model. Applied Economics Letters, 30(1), 97-102. [More Information]
- Nguyen, N., Tran, M., Gunawan, D., Kohn, R. (2023). A Statistical Recurrent Stochastic Volatility Model for Stock Markets. Journal of Business and Economic Statistics, 41(2), 414-428. [More Information]
- Virbickaite, A., Nguyen, H., Tran, M. (2023). Bayesian predictive distributions of oil returns using mixed data sampling volatility models. Resources Policy, 86, 104167. [More Information]
show 1 more
2022
- Jie, R., Gao, J., Vasnev, A., Tran, M. (2022). Adaptive hierarchical hyper-gradient descent. International Journal of Machine Learning and Cybernetics, 13(12), 3785-3805. [More Information]
- Nguyen, N., Tran, M., Kohn, R. (2022). Recurrent Conditional Heteroskedasticity. Journal of Applied Econometrics, 37(5), 1031-1054. [More Information]
- Gunawan, D., Hawkins, G., Tran, M., Kohn, R., Brown, S. (2022). Time-evolving psychological processes over repeated decisions. Psychological Review, 129(3), 438-456. [More Information]
2021
- Yu, X., Nott, D., Tran, M., Klein, N. (2021). Assessment and Adjustment of Approximate Inference Algorithms Using the Law of Total Variance. Journal of Computational and Graphical Statistics, 30(4), 977-990. [More Information]
- Tran, M., Antic, A., Hassani-Mahmooei, B., Ozmen, M. (2021). Data Analytics and Insights. Melbourne, Australia: Wiley. [More Information]
- Tung, D., Tran, M. (2021). Flexible multivariate regression density estimation. Communications in Statistics - Theory and Methods, 50(20), 4703-4717. [More Information]
show 6 more
2020
- Tran, M., Nguyen, N., Nott, D., Kohn, R. (2020). Bayesian Deep Net GLM and GLMM. Journal of Computational and Graphical Statistics, 29(1), 97-113. [More Information]
- Jie, R., Gao, J., Vasnev, A., Tran, M. (2020). HyperTube: A Framework for Population-Based Online Hyperparameter Optimization with Resource Constraints. IEEE Access, 8, 69038-69057. [More Information]
- Gunawan, D., Hawkins, G., Tran, M., Kohn, R., Brown, S. (2020). New estimation approaches for the hierarchical Linear Ballistic Accumulator model. Journal of Mathematical Psychology, 96, 102368. [More Information]
show 2 more
2019
- Tung, D., Tran, M., Cuong, T. (2019). Bayesian adaptive lasso with variational Bayes for variable selection in high-dimensional generalized linear mixed models. Communications in Statistics: Simulation and Computation, 48(2), 530-543. [More Information]
- Gunawan, D., Tran, M., Suzuki, K., Dick, J., Kohn, R. (2019). Computationally Efficient Bayesian Estimation of High Dimensional Archimedian Copulas with Discrete and Mixed Margins. Statistics and Computing, 29(5), 933-946. [More Information]
- Dang, K., Quiroz, M., Kohn, R., Tran, M., Villani, M. (2019). Hamiltonian Monte Carlo with Energy Conserving Subsampling. Journal of Machine Learning Research, 20, 1-31. [More Information]
show 1 more
2018
- Drovandi, C., Tran, M. (2018). Improving the Efficiency of Fully Bayesian Optimal Design of Experiments Using Randomised Quasi-Monte Carlo. Bayesian Analysis, 13(1), 139-162. [More Information]
- Ong, V., Nott, D., Tran, M., Sisson, S., Drovandi, C. (2018). Likelihood-free inference in high dimensions with synthetic likelihood. Computational Statistics and Data Analysis, 128, 271-291. [More Information]
- Quiroz, M., Tran, M., Villani, M., Kohn, R. (2018). Speeding up MCMC by delayed acceptance and data subsampling. Journal of Computational and Graphical Statistics, 27(1), 12-22. [More Information]
show 2 more
2017
- Tran, M., Nott, D., Kohn, R. (2017). Variational Bayes with Intractable Likelihood. Journal of Computational and Graphical Statistics, 26(4), 873-882. [More Information]
2016
- Tran, M., Pitt, M., Kohn, R. (2016). Adaptive Metropolis-Hastings sampling using reversible dependent mixture proposals. Statistics and Computing, 26(1), 361-381. [More Information]
- Tran, M., Nott, D., Kuk, A., Kohn, R. (2016). Parallel Variational Bayes for Large Datasets With an Application to Generalized Linear Mixed Models. Journal of Computational and Graphical Statistics, 25(2), 626-646. [More Information]
2015
- Tran, M., Nott, D., Kohn, R. (2015). Variational Bayes with Intractable Likelihood. 5th Vietnam National Congress in Probability and Statistics, Da Nang, Vietnam: Vietnam Institute for Advanced Study in Mathematics.
2014
- Leng, C., Tran, M., Nott, D. (2014). Bayesian adaptive Lasso. Annals of the Institute of Statistical Mathematics, 66(2), 221-244. [More Information]
- Tran, M., Giordani, P., Mun, X., Kohn, R., Pitt, M. (2014). Copula-Type Estimators for Flexible Multivariate Density Modeling Using Mixtures. Journal of Computational and Graphical Statistics, 23(4), 1163-1178. [More Information]
2013
- Tran, M. (2013). Adaptive Metropolis-Hastings sampling using reversible dependent mixture proposals. 8th Vietnamese Mathematical Conference, Nha Trang, Vietnam: Vietnam Institute for Advanced Study in Mathematics.
- Giordani, P., Mun, X., Tran, M., Kohn, R. (2013). Flexible Multivariate Density Estimation with Marginal Adaptation. Journal of Computational and Graphical Statistics, 22(4), 814-829. [More Information]
- Zhang, W., Xiaoxia, C., Tran, M. (2013). The structural features and the deliberative quality of online discussions. Telematics and Informatics, 30(2), 74-86. [More Information]
2012
- Tran, M., Giordani, P., Kohn, R. (2012). Discussion of "Fast sparse regression and classification" by Jerome Friedman. International Journal of Forecasting, 28(3), 749-750. [More Information]
- Tran, M., Nott, D. (2012). Simultaneous variable selection and component selection for regression density estimation with mixtures of heteroscedastic experts. Electronic Journal of Statistics, 6, 1170-1199. [More Information]
- Nott, D., Marshall, L., Tran, M. (2012). The ensemble Kalman filter is an ABC algorithm. Statistics and Computing, 22(6), 1273-1276. [More Information]
show 2 more
2011
- Tran, M. (2011). A criterion for optimal predictive model selection. Communications in Statistics - Theory and Methods, 40(5), 893-906. [More Information]
- Tran, M. (2011). The loss rank criterion for variable selection in linear regression analysis. Scandinavian Journal of Statistics: theory and applications, 38(3), 466-479. [More Information]
2010
- Hutter, M., Tran, M. (2010). Model selection with the Loss Rank Principle. Computational Statistics and Data Analysis, 54(5), 1288-1306. [More Information]
2009
- Tran, M. (2009). Penalized Maximum Likelihood Principle for Choosing Ridge Parameter. Communications in Statistics: Simulation and Computation, 38(8), 1610-1624. [More Information]
Selected Grants
2022
- ARC Centre of Excellence for Mathematical and Statistical Frontiers of Big Data, Big Models, New Insights, Tran M, Australian Research Council (ARC)/ARC Centres of Excellence
2021
- Quantum Computation for Business Analytics and Finance, Tran M, Sydney Business School/Business School Pilot Research Grant
show more