Associate Professor Minh-Ngoc Tran
People_

Associate Professor Minh-Ngoc Tran

Senior Lecturer
Phone
+61 2 8627 4752
Associate Professor Minh-Ngoc Tran

Minh-Ngoc’s main research interests lie in Bayesian methodology and statistical machine learning. He specialises in fast Variational Bayes and simulation-based methods, such as importance sampling and sequential Monte Carlo, for estimating complex models with Big Data, and in Lasso-type variable selection methods.

His current research is focused on developing efficient methods for estimating statistical models with an intractable likelihood, of which Big Data problems and Approximate Bayesian Computation are special cases.

Minh Ngoc received a PhD in Statistics from the National University of Singapore, a Master and a Bachelor in Mathematics from the Vietnam National University, Hanoi. Before joining the University of Sydney, he worked as a postdoctoral fellow at the University of New South Wales. He is an Associate Investigator in the ARC’s Centre of Excellence for Mathematical and Statistical Frontiers (ACEMS).

  • BUSS1020 Quantitative Business Analysis
  • BUSS6002 Data Science in Business
  • BUSS7904 Advanced Analysis for Research
  • QBUS3820 Data Mining and Data Analysis
  • QBUS3830 Advanced Analytics
  • QBUS5001 Quantitative Methods for Business
  • QBUS6840 Predictive Analytics
Project titleResearch student
Optimization on the space of probability measuresPeiwen JIANG
Deep learning in Financial Time Series ForecastingChen LIU
Research on the Explainability of Machine Learning and Artificial Intelligence in Business AnalyticsHongwei MA
Research on Financial Risk Management Based on Financial TechnologyHaoyuan WANG

Selected publications

Publications

Books

  • Tran, M., Antic, A., Hassani-Mahmooei, B., Ozmen, M. (2021). Data Analytics and Insights. Melbourne, Australia: Wiley. [More Information]

Journals

  • Liu, C., Wang, C., Tran, M., Kohn, R. (2025). A long short-term memory enhanced realized conditional heteroskedasticity model. Economic Modelling, 142, 106922. [More Information]
  • Gunawan, D., Kohn, R., Tran, M. (2025). Flexible and Robust Particle Tempering for State Space Models. Econometrics and Statistics, 33, 35-55. [More Information]
  • Lopatnikova, A., Tran, M., Sisson, S. (2024). An Introduction to Quantum Computing for Statisticians and Data Scientists. Foundations of Data Science, 6(3), 278-307. [More Information]

Conferences

  • Lopatnikova, A., Tran, M. (2023). Quantum Variational Bayes on Manifolds. 2023 IEEE International Conference on Acoustics, Speech, and Signal Processing (ICASSP), United States: Institute of Electrical and Electronics Engineers (IEEE). [More Information]
  • Jie, R., Gao, J., Vasnev, A., Tran, M. (2021). Regularized flexible activation function combination for deep neural networks. 25th International Conference on Pattern Recognition, ICPR 2020, Piscataway, New Jersey: Institute of Electrical and Electronics Engineers (IEEE). [More Information]
  • Salomone, R., Quiroz, M., Kohn, R., Villani, M., Tran, M. (2020). Spectral Subsampling MCMC for Stationary Time Series. 37th International Conference on Machine Learning (ICML 2020), Vienna: International Machine Learning Society.

2025

  • Liu, C., Wang, C., Tran, M., Kohn, R. (2025). A long short-term memory enhanced realized conditional heteroskedasticity model. Economic Modelling, 142, 106922. [More Information]
  • Gunawan, D., Kohn, R., Tran, M. (2025). Flexible and Robust Particle Tempering for State Space Models. Econometrics and Statistics, 33, 35-55. [More Information]

2024

  • Lopatnikova, A., Tran, M., Sisson, S. (2024). An Introduction to Quantum Computing for Statisticians and Data Scientists. Foundations of Data Science, 6(3), 278-307. [More Information]
  • Dao, V., Gunawan, D., Kohn, R., Tran, M., Hawkins, G., Brown, S. (2024). Bayesian Inference for Evidence Accumulation Models with Regressors. Psychological Methods, in press. [More Information]
  • Nguyen, H., Nguyen, H., Tran, M. (2024). Deep learning enhanced volatility modeling with covariates. Finance Research Letters, 69, 106145. [More Information]

2023

  • Nguyen, H., Nguyen, N., Tran, M. (2023). A dynamic leverage stochastic volatility model. Applied Economics Letters, 30(1), 97-102. [More Information]
  • Nguyen, N., Tran, M., Gunawan, D., Kohn, R. (2023). A Statistical Recurrent Stochastic Volatility Model for Stock Markets. Journal of Business and Economic Statistics, 41(2), 414-428. [More Information]
  • Virbickaite, A., Nguyen, H., Tran, M. (2023). Bayesian predictive distributions of oil returns using mixed data sampling volatility models. Resources Policy, 86, 104167. [More Information]

2022

  • Jie, R., Gao, J., Vasnev, A., Tran, M. (2022). Adaptive hierarchical hyper-gradient descent. International Journal of Machine Learning and Cybernetics, 13(12), 3785-3805. [More Information]
  • Nguyen, N., Tran, M., Kohn, R. (2022). Recurrent Conditional Heteroskedasticity. Journal of Applied Econometrics, 37(5), 1031-1054. [More Information]
  • Gunawan, D., Hawkins, G., Tran, M., Kohn, R., Brown, S. (2022). Time-evolving psychological processes over repeated decisions. Psychological Review, 129(3), 438-456. [More Information]

2021

  • Yu, X., Nott, D., Tran, M., Klein, N. (2021). Assessment and Adjustment of Approximate Inference Algorithms Using the Law of Total Variance. Journal of Computational and Graphical Statistics, 30(4), 977-990. [More Information]
  • Tran, M., Antic, A., Hassani-Mahmooei, B., Ozmen, M. (2021). Data Analytics and Insights. Melbourne, Australia: Wiley. [More Information]
  • Tung, D., Tran, M. (2021). Flexible multivariate regression density estimation. Communications in Statistics - Theory and Methods, 50(20), 4703-4717. [More Information]

2020

  • Tran, M., Nguyen, N., Nott, D., Kohn, R. (2020). Bayesian Deep Net GLM and GLMM. Journal of Computational and Graphical Statistics, 29(1), 97-113. [More Information]
  • Jie, R., Gao, J., Vasnev, A., Tran, M. (2020). HyperTube: A Framework for Population-Based Online Hyperparameter Optimization with Resource Constraints. IEEE Access, 8, 69038-69057. [More Information]
  • Gunawan, D., Hawkins, G., Tran, M., Kohn, R., Brown, S. (2020). New estimation approaches for the hierarchical Linear Ballistic Accumulator model. Journal of Mathematical Psychology, 96, 102368. [More Information]

2019

  • Tung, D., Tran, M., Cuong, T. (2019). Bayesian adaptive lasso with variational Bayes for variable selection in high-dimensional generalized linear mixed models. Communications in Statistics: Simulation and Computation, 48(2), 530-543. [More Information]
  • Gunawan, D., Tran, M., Suzuki, K., Dick, J., Kohn, R. (2019). Computationally Efficient Bayesian Estimation of High Dimensional Archimedian Copulas with Discrete and Mixed Margins. Statistics and Computing, 29(5), 933-946. [More Information]
  • Dang, K., Quiroz, M., Kohn, R., Tran, M., Villani, M. (2019). Hamiltonian Monte Carlo with Energy Conserving Subsampling. Journal of Machine Learning Research, 20, 1-31. [More Information]

2018

  • Drovandi, C., Tran, M. (2018). Improving the Efficiency of Fully Bayesian Optimal Design of Experiments Using Randomised Quasi-Monte Carlo. Bayesian Analysis, 13(1), 139-162. [More Information]
  • Ong, V., Nott, D., Tran, M., Sisson, S., Drovandi, C. (2018). Likelihood-free inference in high dimensions with synthetic likelihood. Computational Statistics and Data Analysis, 128, 271-291. [More Information]
  • Quiroz, M., Tran, M., Villani, M., Kohn, R. (2018). Speeding up MCMC by delayed acceptance and data subsampling. Journal of Computational and Graphical Statistics, 27(1), 12-22. [More Information]

2017

  • Tran, M., Nott, D., Kohn, R. (2017). Variational Bayes with Intractable Likelihood. Journal of Computational and Graphical Statistics, 26(4), 873-882. [More Information]

2016

  • Tran, M., Pitt, M., Kohn, R. (2016). Adaptive Metropolis-Hastings sampling using reversible dependent mixture proposals. Statistics and Computing, 26(1), 361-381. [More Information]
  • Tran, M., Nott, D., Kuk, A., Kohn, R. (2016). Parallel Variational Bayes for Large Datasets With an Application to Generalized Linear Mixed Models. Journal of Computational and Graphical Statistics, 25(2), 626-646. [More Information]

2015

  • Tran, M., Nott, D., Kohn, R. (2015). Variational Bayes with Intractable Likelihood. 5th Vietnam National Congress in Probability and Statistics, Da Nang, Vietnam: Vietnam Institute for Advanced Study in Mathematics.

2014

  • Leng, C., Tran, M., Nott, D. (2014). Bayesian adaptive Lasso. Annals of the Institute of Statistical Mathematics, 66(2), 221-244. [More Information]
  • Tran, M., Giordani, P., Mun, X., Kohn, R., Pitt, M. (2014). Copula-Type Estimators for Flexible Multivariate Density Modeling Using Mixtures. Journal of Computational and Graphical Statistics, 23(4), 1163-1178. [More Information]

2013

  • Tran, M. (2013). Adaptive Metropolis-Hastings sampling using reversible dependent mixture proposals. 8th Vietnamese Mathematical Conference, Nha Trang, Vietnam: Vietnam Institute for Advanced Study in Mathematics.
  • Giordani, P., Mun, X., Tran, M., Kohn, R. (2013). Flexible Multivariate Density Estimation with Marginal Adaptation. Journal of Computational and Graphical Statistics, 22(4), 814-829. [More Information]
  • Zhang, W., Xiaoxia, C., Tran, M. (2013). The structural features and the deliberative quality of online discussions. Telematics and Informatics, 30(2), 74-86. [More Information]

2012

  • Tran, M., Giordani, P., Kohn, R. (2012). Discussion of "Fast sparse regression and classification" by Jerome Friedman. International Journal of Forecasting, 28(3), 749-750. [More Information]
  • Tran, M., Nott, D. (2012). Simultaneous variable selection and component selection for regression density estimation with mixtures of heteroscedastic experts. Electronic Journal of Statistics, 6, 1170-1199. [More Information]
  • Nott, D., Marshall, L., Tran, M. (2012). The ensemble Kalman filter is an ABC algorithm. Statistics and Computing, 22(6), 1273-1276. [More Information]

2011

  • Tran, M. (2011). A criterion for optimal predictive model selection. Communications in Statistics - Theory and Methods, 40(5), 893-906. [More Information]
  • Tran, M. (2011). The loss rank criterion for variable selection in linear regression analysis. Scandinavian Journal of Statistics: theory and applications, 38(3), 466-479. [More Information]

2010

  • Hutter, M., Tran, M. (2010). Model selection with the Loss Rank Principle. Computational Statistics and Data Analysis, 54(5), 1288-1306. [More Information]

2009

  • Tran, M. (2009). Penalized Maximum Likelihood Principle for Choosing Ridge Parameter. Communications in Statistics: Simulation and Computation, 38(8), 1610-1624. [More Information]

Selected Grants

2022

  • ARC Centre of Excellence for Mathematical and Statistical Frontiers of Big Data, Big Models, New Insights, Tran M, Australian Research Council (ARC)/ARC Centres of Excellence

2021

  • Quantum Computation for Business Analytics and Finance, Tran M, Sydney Business School/Business School Pilot Research Grant