Skip to main content
Fish in the Great Barrier Reef.
News_

Great Barrier Reef reveals rapid changes of ancient glaciers

26 July 2018
Insights from the past indicate models may be too conservative
Graphs of sea levels about the time of the poorly understood Last Glacial Maximum indicated ice sheets were stable before slowly starting to melt but a new Nature paper paints a different picture, which could be bad news for the reef.

Graphs of global sea levels around the time of the poorly understood Last Glacial Maximum (27,000 to 20,000 years ago) previously showed stable ice sheets for about 10,000 years before the ice slowly started to melt.

New analysis of the first Great Barrier Reef samples covering the time 22,000 years ago to 19,000 years ago finally adds detail to that period, providing valuable insights for models of climate and ice sheet dynamics. 

Associate Professor Jody Webster from the University of Sydney was part of the research team, led by Professor Yusuke Yokoyama of the University of Tokyo, which divided the Last Glacial Maximum into two distinct periods:

  • Period A - 30,000 to 21,500 years ago, the sea level was relatively stable.
  • Period B - 21,000 to 17,000 years ago, the sea level  was unstable with large, rapid fluctuations.
Close up of white coral in the ocean. Image credits: (Immediately above) Tokyo University, Hironobu Kan; Top of page: Yusuke Yokoyama.

Image credits: (above) Hironobu Kan, (top of page) Yusuke Yokoyama; Tokyo University.

The rapid drop in sea level observed 21,000 years ago is particularly striking because it contradicts current understanding of this period.

"This challenges the paradigm that glacier size can only change slowly, because rapid sea level changes mean water must melt or freeze rapidly," said Professor Yokoyama, lead author of the research paper published in Nature on 26 July.

These rapid shifts in the size of ancient glaciers are significant in the context of modern climate change and its associated impacts. 

Associate Professor Jody Webster from the University of Sydney’s School of Geosciences led a team of reef scientists from Spain, Japan, and the United States responsible for interpreting ecological data used to track reef habitat depth, and therefore relative sea level, over time.

This information was combined with radiometric data and used by Professor Yokoyama and his team to model fluctuations in the vertical position of the seafloor caused by changes in water or ice volume. The combined results clarified ice sheet dynamics during the poorly understood Last Glacial Maximum period.

Fossil coral reef samples being collected. Credit: Hironobu Kan, University of Tokyo.

Credit: ECORD/IODP    

"Fossil coral reefs were very sensitive to environmental changes, so by examining the biological assemblages in the cores we were able to reconstruct how ancient water depths changed through time," said Associate Professor Webster.

Professor Yokoyama explained: “Current models of glacier dynamics may be too conservative. The possibility of rapid increases or decreases in sea level should be considered.”

Future climate prediction models are tested by their ability to accurately calculate historic climate parameters that are verified by sample data. All accurate, detailed data about ancient climates are additional points to check the accuracy of climate models.

Collecting from the Reef

In 2010, Professor Yokoyama was the co-chief scientist of the international Integrated Ocean Drilling Program Expedition 325: Great Barrier Reef Environmental Changes. Associate Professor Jody Webster from the University of Sydney, School of Geosciences was also co-chief scientist on the expedition.

The research team spent two months on the 93.6-meter-long research vessel Greatship Maya collecting fossil coral reef samples. The reef cores analysed in this study came from two sites: Hydrographers Passage offshore of Mackay and Noggin Pass offshore of Cairns, both on the East Coast of the Australian state of Queensland.

Collecting fossil corals from the Last Glacial Maximum is technically and logistically challenging.

"We sampled coral from 90 meters to 130 meters below the current sea level. It's difficult to collect data anywhere between 50 and 200 meters underwater; divers usually can't go below 30 meters and ship captains prefer to not go shallower than 200 meters," said Professor Yokoyama.

The Great Barrier Reef was selected as the coral core sample site because it can reveal a uniquely clear picture of past glacier ice sheet behaviour. The reef's tropical position near the equator means it was and remains far from the immediate influence of glacier ice sheets, so sea level changes local to the Great Barrier Reef reflect global changes.

Additionally, the Australian tectonic plate has minimal seismic activity, so earthquakes did not change the position of the reef. The gentle sloping structure of the ancient Great Barrier Reef also meant researchers could physically collect the samples they need.  

"Sites close to the former ice sheets cannot provide accurate sea level histories because over time they are overwritten by large deformations of the Earth," said Professor Yokoyama.

Related news