PhD from Moscow State University 1986
- Classical Lie algebras and their representations
- Vertex algebras
- Quantum groups
- Algebraic combinatorics
List of publications
Talks and lectures
Selected publications
Publications
Expand all
Books
- Molev, A. (2018). Sugawara Operators for Classical Lie Algebras. Providence: American Mathematical Society. [More Information]
- Molev, A. (2007). Yangians and Classical Lie Algebras. Providence, RI, USA: American Mathematical Society.
Book Chapters
- Molev, A., Mukhin, E. (2014). Yangian Characters and Classical W-Algebras. In Winfried Kohnen, Rainer Weissauer (Eds.), Conformal Field Theory, Automorphic Forms and Related Topics, (pp. 287-334). Berlin, Heidelberg: Springer Science+Business Media. [More Information]
- Molev, A. (2006). Gelfand-Tsetlin bases for classical Lie algebras. In M. Hazewinkel (Eds.), Handbook of algebra. Vol 4, (pp. 109-170). Amsterdam ; New York: Elsevier.
- Molev, A. (2003). Yangians and their applications. In M. Hazelwinkel (Eds.), Handbook of Algebra. Vol 3, (pp. 909-959). Amsterdam ; London: Elsevier. [More Information]
Journals
- Molev, A. (2025). Representations of the Super-Yangian of Type D(n, m). Algebras and Representation Theory, 28, 25-45. [More Information]
- Molev, A. (2024). A Drinfeld-Type Presentation of the Orthosymplectic Yangians. Algebras and Representation Theory, 27, 469-494. [More Information]
- Jing, N., Liu, M., Molev, A. (2024). Eigenvalues of quantum Gelfand invariants. Journal of Mathematical Physics, 655(6), Article 061703 -1-Article 061703-10. [More Information]
show 64 more
Conferences
- Futorny, V., Molev, A., Ovsienko, S. (2008). Gelfand-Tsetlin Bases for Representations of Finite W-Algebras and Shifted Yangians. VII International Workshop Lie theory and its applications in physics, Sofia, Bulgaria: Heron Publishing.
Expand all
2025
- Molev, A. (2025). Representations of the Super-Yangian of Type D(n, m). Algebras and Representation Theory, 28, 25-45. [More Information]
2024
- Molev, A. (2024). A Drinfeld-Type Presentation of the Orthosymplectic Yangians. Algebras and Representation Theory, 27, 469-494. [More Information]
- Jing, N., Liu, M., Molev, A. (2024). Eigenvalues of quantum Gelfand invariants. Journal of Mathematical Physics, 655(6), Article 061703 -1-Article 061703-10. [More Information]
- Molev, A., Ragoucy, E. (2024). Gaussian generators for the Yangian associated with the Lie superalgebra osp(1|2m). Journal of Algebra, 655(October 2024), 722-757. [More Information]
show 2 more
2023
- Molev, A. (2023). Representations of the Super Yangians of Types A and C. Algebras and Representation Theory, 26, 1007-1027. [More Information]
- Molev, A. (2023). Representations of the Yangians associated with Lie superalgebras osp(1|2n). Communications in Mathematical Physics, 398, 541-571. [More Information]
2022
- Molev, A. (2022). Odd reflections in the Yangian associated with gl(m|n). Letters in Mathematical Physics, 112, 8. [More Information]
- Molev, A. (2022). W-algebras associated with centralizers in type A. International Mathematics Research Notices, 2022 (8), 6019-6037. [More Information]
2021
- Molev, A. (2021). Casimir elements and Sugawara operators for Takiff algebras. Journal of Mathematical Physics, 62(1), 11701. [More Information]
- Molev, A. (2021). Center at the critical level for centralizers in type A. Journal of Algebra, 566, 163-186. [More Information]
- Molev, A., Yakimova, O. (2021). Monomial bases and branching rules. Transformation Groups, 26(3), 995-1024. [More Information]
show 2 more
2020
- Molev, A., Ragoucy, E. (2020). Classical W-algebras for Centralizers. Communications in Mathematical Physics, 378(1), 691-703. [More Information]
- Jing, N., Liu, M., Molev, A. (2020). Isomorphism between the R-matrix and Drinfeld presentations of quantum affine algebra: Type C. Journal of Mathematical Physics, 61(3), Art. 031701 - 1-Art. 031701 - 41. [More Information]
- Jing, N., Liu, M., Molev, A. (2020). Isomorphism between the R-Matrix and Drinfeld Presentations of Quantum Affine Algebra:Types B and D. Symmetry, Integrability and Geometry: Methods and Applications (SIGMA), 16, 043 - 1-043 - 49. [More Information]
show 1 more
2019
- Molev, A., Ragoucy, E. (2019). Higher-order Hamiltonians for the trigonometric Gaudin model. Letters in Mathematical Physics, 109(9), 2035-2048. [More Information]
- Molev, A., Yakimova, O. (2019). Quantisation and nilpotent limits of Mishchenko–Fomenko subalgebras. Representation Theory, 23(12), 350-378. [More Information]
2018
- Jing, N., Kozic, S., Molev, A., Yang, F. (2018). Center of the quantum affine vertex algebra in type A. Journal of Algebra, 496, 138-186. [More Information]
- Jing, N., Liu, M., Molev, A. (2018). Isomorphism between the R-matrix and Drinfeld presentations of Yangian in types B, C and D. Communications in Mathematical Physics, 361, 827-872. [More Information]
- Molev, A. (2018). Sugawara Operators for Classical Lie Algebras. Providence: American Mathematical Society. [More Information]
2017
- Kozic, S., Molev, A. (2017). Center of the quantum affine vertex algebra associated with trigonometric R-matrix. Journal of Physics A: Mathematical and General, 50(32), 1-21. [More Information]
- Molev, A., Mukhin, E. (2017). Eigenvalues of Bethe vectors in the Gaudin model. Theoretical and Mathematical Physics, 192(3), 1258-1281. [More Information]
- Arakawa, T., Molev, A. (2017). Explicit generators in rectangular affine W-algebras of type A. Letters in Mathematical Physics, 107(1), 47-59. [More Information]
2016
- Frappat, L., Naihuan, J., Molev, A., Ragoucy, E. (2016). Higher Sugawara Operators for the Quantum Affine Algebras of Type A. Communications in Mathematical Physics, 345, 631-657. [More Information]
- Molev, A., Ragoucy, E., Rozhkovskaya, N. (2016). Segal-Sugawara vectors for the Lie algebra of type G2. Journal of Algebra, 455, 386-401. [More Information]
2015
- Molev, A., Ragoucy, E. (2015). Classical W-algebras in types A, B, C, D and G. Communications in Mathematical Physics, 336, 1053-1084. [More Information]
- Molev, A., Mukhin, E. (2015). Invariants of the vacuum module associated with the Lie superalgebra gl (1∣1). Journal of Physics A: Mathematical and Theoretical, 48(1), 1-20. [More Information]
- Futorny, V., Molev, A. (2015). Quantization of the shift of argument subalgebras in type A. Advances in Mathematics, 285, 1358-1375. [More Information]
2014
- Isaev, A., Molev, A., Ogievetsky, O. (2014). Idempotents for Birman-Murakami-Wenzl algebras and reflection equation. Advances in Theoretical and Mathematical Physics, 18(1), 1-25. [More Information]
- Matsumoto, T., Molev, A. (2014). Representations of centrally extended Lie superalgebra psl(2|2). Journal of Mathematical Physics, 55(9), 1-22. [More Information]
- Molev, A., Ragoucy, E. (2014). The MacMahon Master Theorem for Right Quantum Superalgebras and Higher Sugawara Operators for gl(m|n). Moscow Mathematical Journal, 14(1), 83-119. [More Information]
show 1 more
2013
- Iorgov, N., Molev, A., Ragoucy, E. (2013). Casimir elements from the Brauer-Schur-Weyl duality. Journal of Algebra, 387, 144-159. [More Information]
- Molev, A., Rozhkovskaya, N. (2013). Characteristic maps for the Brauer algebra. Journal of Algebraic Combinatorics, 38(1), 15-35. [More Information]
- Molev, A. (2013). Feigin-Frenkel center in types B, C and D. Inventiones Mathematicae, 191(1), 1-34. [More Information]
2012
- Isaev, A., Molev, A., Ogievetesky, O. (2012). A New Fusion Procedure for the Brauer Algebra and Evaluation Homomorphisms. International Mathematics Research Notices, 2012 (11), 2571-2606. [More Information]
2011
- Davydov, A., Molev, A. (2011). A categorical approach to classical and quantum Schur-Weyl duality. Contemporary Mathematics, 537, 143-171. [More Information]
- Molev, A. (2011). Combinatorial Bases For Covariant Representations Of The Lie Superalgebra math symbols gl(m/n). Academia Sinica. Institute of Mathematics. Bulletin, 6(4), 415-462.
2010
- Isaev, A., Molev, A. (2010). Fusion procedure for the Brauer algebra. Algebra i Analiz, 22(3), 142-154. [More Information]
- Gow, L., Molev, A. (2010). Representations of twisted q-Yangians. Selecta Mathematica, New Series, 16(3), 439-499. [More Information]
2009
- Molev, A. (2009). Comultiplication rules for the double Schur functions and Cauchy identities. The Journal of Combinatorics, 16(1), R13-1-R13-44.
- Molev, A. (2009). Littlewood-Richardson polynomials. Journal of Algebra, 321(11), 3450-3468. [More Information]
- Chervov, A., Molev, A. (2009). On higher-order Sugawara operators. International Mathematics Research Notices, 2009 (9), 1612-1635. [More Information]
show 1 more
2008
- Billig, Y., Molev, A., Zhang, R. (2008). Differential equations in vertex algebras and simple modules for the Lie algebra of vector fields on a torus. Advances in Mathematics, 218(6), 1972-2004. [More Information]
- Futorny, V., Molev, A., Ovsienko, S. (2008). Gelfand-Tsetlin Bases for Representations of Finite W-Algebras and Shifted Yangians. VII International Workshop Lie theory and its applications in physics, Sofia, Bulgaria: Heron Publishing.
- Molev, A. (2008). On the fusion procedure for the symmetric group. Reports on Mathematical Physics, 61(2), 181-188. [More Information]
show 2 more
2007
- Molev, A. (2007). Yangians and Classical Lie Algebras. Providence, RI, USA: American Mathematical Society.
2006
- Hopkins, M., Molev, A. (2006). A q-Analogue of the Centralizer Construction and Skew Representations of the Quantum Affine Algebra. Symmetry, Integrability and Geometry: Methods and Applications (SIGMA), 2, 092-1-092-29. [More Information]
- Molev, A. (2006). Gelfand-Tsetlin bases for classical Lie algebras. In M. Hazewinkel (Eds.), Handbook of algebra. Vol 4, (pp. 109-170). Amsterdam ; New York: Elsevier.
- Arnaudon, D., Molev, A., Ragoucy, E. (2006). On the R-Matrix Realization of Yangians and their Representations. Annales Henri Poincare, 7, 1269-1325. [More Information]
show 4 more
2005
- Futorny, V., Molev, A., Ovsienko, S. (2005). Harish-Chandra modules for Yangians. Representation Theory, 9, 426-454.
2004
- Bahturin, Y., Molev, A. (2004). Casimir elements for some graded Lie algebras and superalgebras. Czechoslovak Journal of Physics: europhysics journal, 54(11), 1159-1164. [More Information]
- Molev, A., Tolstoy, V., Zhang, R. (2004). On Irreducibility Of Tensor Products Of Evaluation Modules For The Quantum Affine Algebra. Journal of Physics A: Mathematical and General, 37(6), 2385-2399. [More Information]
- Molev, A., Retakh, V. (2004). Quasideterminants And Casimir Elements For The General Linear Lie Superalgebra. International Mathematics Research Notices, 2004 (13), 611-619.
show 1 more
2003
- Molev, A. (2003). A new quantum analog of the Brauer algebra. Czechoslovak Journal of Physics: europhysics journal, 53(11), 1073-1078. [More Information]
- Molev, A., Ragoucy, E., Sorba, P. (2003). Coideal subalgebras in quantum affine algebras. Reviews in Mathematical Physics: a journal for survey and expository articles in the field of mathematical physics, 1(1), 789-822. [More Information]
- Molev, A. (2003). Yangians and their applications. In M. Hazelwinkel (Eds.), Handbook of Algebra. Vol 3, (pp. 909-959). Amsterdam ; London: Elsevier. [More Information]
2002
- Molev, A. (2002). Irreducibility criterion for tensor products of Yangian evaluation modules. Duke Mathematical Journal, 112(2), 307-341. [More Information]
- Molev, A., Ragoucy, E. (2002). Representations of reflection algebras. Reviews in Mathematical Physics: a journal for survey and expository articles in the field of mathematical physics, 14(3), 317-342. [More Information]
- Molev, A. (2002). Yangians and transvector algebras. Discrete Mathematics, 246(1), 231-253. [More Information]
2001
- Molev, A., Olshanski, G. (2001). Degenerate affine Hecke algebras and centralizer construction for the symmetric groups. Journal of Algebra, 237(1), 302-341. [More Information]
Selected Grants
2017
- Quantum vertex algebras, Molev A, Australian Research Council (ARC)/Discovery Projects (DP)
2014
- Classical and affine W-algebras, Molev A, Australian Research Council (ARC)/Discovery Projects (DP)
show more