Dr Haotian Wu
People_

Dr Haotian Wu

Phone
9351 4077
Fax
9351 4534
Address
F07 - Carslaw Building
The University of Sydney

Education:

PhD in Mathematics, The University of Texas at Austin (2013).

BS in Mathematics, BS in Physics, Lafayette College (2007).

Differential Geometry, Partial Differential Equations.

Haotian Wu is a member of the Geometry, Topology and Analysis Research Group.

Project titleResearch student
General Kahler Ricci FlowAlexander BEDNAREK
Hölder regularity of solutions to degenerate complex Monge–Ampère equationsTiernan CARTWRIGHT

Publications

Journals

  • Li, X., Wang, K., Wu, H. (2025). An upper bound for the first nonzero Steklov Eigenvalue. ESAIM: Control, Optimisation and Calculus of Variations, 30(5), 1809-1841. [More Information]
  • Garfinkle, D., Isenberg, J., Knopf, D., Wu, H. (2023). A Numerical Stability Analysis of Mean Curvature Flow of Noncompact Hypersurfaces with Type-II Curvature Blowup: II. Experimental Mathematics, Pre-Print. [More Information]
  • Li, X., Wang, K., Wu, H. (2023). On the second Robin eigenvalue of the Laplacian. Calculus of Variations and Partial Differential Equations, 62(9), Article 256-1-Article 256-17. [More Information]

2025

  • Li, X., Wang, K., Wu, H. (2025). An upper bound for the first nonzero Steklov Eigenvalue. ESAIM: Control, Optimisation and Calculus of Variations, 30(5), 1809-1841. [More Information]

2023

  • Garfinkle, D., Isenberg, J., Knopf, D., Wu, H. (2023). A Numerical Stability Analysis of Mean Curvature Flow of Noncompact Hypersurfaces with Type-II Curvature Blowup: II. Experimental Mathematics, Pre-Print. [More Information]
  • Li, X., Wang, K., Wu, H. (2023). On the second Robin eigenvalue of the Laplacian. Calculus of Variations and Partial Differential Equations, 62(9), Article 256-1-Article 256-17. [More Information]

2022

  • Wang, K., Wu, H. (2022). A quantitative Bucur–Henrot inequality. Mathematische Nachrichten, 295(12), 2436-2451. [More Information]
  • Isenberg, J., Wu, H., Zhang, Z. (2022). On the precise asymptotics of Type-IIb solutions to mean curvature flow. Transactions of the American Mathematical Society, 9(Open Access), 564-585. [More Information]

2021

  • Garfinkle, D., Isenberg, J., Knopf, D., Wu, H. (2021). A numerical stability analysis of mean curvature flow of noncompact hypersurfaces with type-II curvature blowup. Nonlinearity, 34(9), 6539-6560. [More Information]

2020

  • Isenberg, J., Wu, H., Zhang, Z. (2020). Mean curvature flow of noncompact hypersurfaces with Type-II curvature blow-up. II. Advances in Mathematics, 367, Art. 107111 - 1-Art. 107111 - 44. [More Information]

2019

  • Isenberg, J., Wu, H. (2019). Mean curvature flow of noncompact hypersurfaces with Type-II curvature blow-up. Journal fur die Reine und Angewandte Mathematik, 754, 225-251. [More Information]

2016

  • Williams, M., Wu, H. (2016). Dynamical stability of algebraic Ricci solitons. Journal fur die Reine und Angewandte Mathematik, 713(713), 225-243. [More Information]
  • Ache, A., Maximo, D., Wu, H. (2016). Metrics with nonnegative Ricci curvature on convex three-manifolds. Geometry and Topology, 20(5), 2905-2922. [More Information]

2014

  • Wu, H. (2014). On Type-II Singularities in Ricci Flow on R^N. Communications in Partial Differential Equations, 39(11), 2064-2090. [More Information]

2013

  • Wu, H. (2013). Stability of complex hyperbolic space under curvature-normalized Ricci flow. Geometriae Dedicata, 164(1), 231-258. [More Information]

2009

  • Abedin, F., Corvino, J., Kapita, S., Wu, H. (2009). On isoperimetric surfaces in general relativity, II. Journal of Geometry and Physics, 59(11), 1453-1460. [More Information]

2008

  • Corvino, J., Wu, H. (2008). On the center of mass of isolated systems. Classical and Quantum Gravity, 25(8), Art. 085008-18 pages. [More Information]

Selected Grants

2023

  • Elliptic and parabolic problems in geometric analysis, Wu H, Faculty of Science/Faculty Startup Scheme

2018

  • Singularity Analysis for Ricci Flow and Mean Curvature Flow, Wu H, Australian Research Council (ARC)/Discovery Early Career Researcher Award (DECRA)