Dr Tiangang Cui
People_

Dr Tiangang Cui

Address
F07 - Carslaw Building
The University of Sydney
Project titleResearch student
Transport Maps for Digital Twins with Applications to Soft Tissue MechanicsAlex DE BEER
Tensor Methods for Sequential Scientific Machine Learning with Application to Digital TwinsDaniel TRAN

Publications

Book Chapters

  • Bardsley, J., Cui, T. (2017). A Metropolis-Hastings-within-Gibbs sampler for nonlinear hierarchical-Bayesian inverse problems. In David R Wood, Jan de Gier, Cheryl E Praeger, Terence Tao (Eds.), 2017 MATRIX Annals, (pp. 1-10). Switzerland: Springer Nature Switzerland. [More Information]
  • Yee, N., Roosta-Khorasani, F., Cui, T. (2017). Optimization Methods for Inverse Problems. In David R Wood, Jan de Gier, Cheryl E Praeger, Terence Tao (Eds.), 2017 MATRIX Annals, (pp. 121-140). Switzerland: Springer Nature Switzerland.

Journals

  • Cui, T., Dick, J., Pillichshammer, F. (2025). Quasi-Monte Carlo methods for mixture distributions and approximated distributions via piecewise linear interpolation. Advances in Computational Mathematics, 5(1), Article 10 - 1-Article 10 - 44. [More Information]
  • Cui, T., Dolgov, S., Scheichl, R. (2024). Deep Importance Sampling Using Tensor Trains with Application to a Priori and a Posteriori Rare Events. SIAM Journal on Scientific Computing, 46(1), C1-C29. [More Information]
  • Cui, T., Detommaso, G., Scheichl, R. (2024). Multilevel dimension-independent likelihood-informed MCMC for large-scale inverse problems. Inverse Problems, 40(3), Article number 035005-1-Article number 035005-33. [More Information]

2025

  • Cui, T., Dick, J., Pillichshammer, F. (2025). Quasi-Monte Carlo methods for mixture distributions and approximated distributions via piecewise linear interpolation. Advances in Computational Mathematics, 5(1), Article 10 - 1-Article 10 - 44. [More Information]

2024

  • Cui, T., Dolgov, S., Scheichl, R. (2024). Deep Importance Sampling Using Tensor Trains with Application to a Priori and a Posteriori Rare Events. SIAM Journal on Scientific Computing, 46(1), C1-C29. [More Information]
  • Cui, T., Detommaso, G., Scheichl, R. (2024). Multilevel dimension-independent likelihood-informed MCMC for large-scale inverse problems. Inverse Problems, 40(3), Article number 035005-1-Article number 035005-33. [More Information]
  • Cui, T., De Sterck, H., Gilbert, A., Polishchuk, S., Scheichl, R. (2024). Multilevel Monte Carlo Methods for Stochastic Convection–Diffusion Eigenvalue Problems. Journal of Scientific Computing, 99(3), Article 77-1-Article 77-34. [More Information]

2023

  • Cui, T., Wang, Z., Zhang, Z. (2023). A variational neural network approach for glacier modelling with nonlinear rheology. Communications in Computational Physics, 34(4), 934-854. [More Information]

2022

  • Cui, T., Dolgov, S. (2022). Deep composition of tensor trains using squared inverse Rosenblatt transports. Foundations of Computational Mathematics, 22, 1861-1922. [More Information]

2020

  • Brown, R., Bardsley, J., Cui, T. (2020). Semivariogram methods for modeling Whittle–Matérn priors in Bayesian inverse problems. Inverse Problems, 36, 055006-1-055006-27. [More Information]

2017

  • Bardsley, J., Cui, T. (2017). A Metropolis-Hastings-within-Gibbs sampler for nonlinear hierarchical-Bayesian inverse problems. In David R Wood, Jan de Gier, Cheryl E Praeger, Terence Tao (Eds.), 2017 MATRIX Annals, (pp. 1-10). Switzerland: Springer Nature Switzerland. [More Information]
  • Wang, Z., Bardsley, J., Solonen, A., Cui, T., Marzouk, Y. (2017). Bayesian Inverse Problems with l-1 Priors: A Randomize-Then-Optimize Approach. SIAM Journal on Scientific Computing, 39(5), 5140-5166. [More Information]
  • Spantini, A., Cui, T., Wilcox, K., Tenorio, L., Marzouk, Y. (2017). Goal-oriented optimal approximations of Bayesian linear inverse problems. SIAM Journal on Scientific Computing, 39(5), S167-S196. [More Information]

2016

  • Cui, T., Law, K., Marzouk, Y. (2016). Dimension-independent likelihood-informed MCMC. Journal of Computational Physics, 304, 109-137. [More Information]
  • Peherstorfer, B., Cui, T., Marzouk, Y., Willcox, K. (2016). Multifidelity importance sampling. Computer Methods in Applied Mechanics and Engineering, 300, 490-509. [More Information]
  • Solonen, A., Cui, T., Hakkarainen, J., Marzouk, Y. (2016). On dimension reduction in Gaussian filters. Inverse Problems, 32(4), 45003. [More Information]

2015

  • Cui, T., Marzouk, Y., Willcox, K. (2015). Data-driven model reduction for the Bayesian solution of inverse problems. International Journal for Numerical Methods in Engineering, 102(5), 966-990. [More Information]
  • Spantini, A., Solonen, A., Cui, T., Martin, J., Tenorio, L., Marzouk, Y. (2015). Optimal low-rank approximations of Bayesian linear inverse problems. SIAM Journal on Scientific Computing, 37(6), A2451-A2487. [More Information]

2014

  • Cui, T., Ward, N., Kaipio, J. (2014). Characterization of parameters for a spatially heterogenous aquifer from pumping test data. Journal of Hydrologic Engineering, 19(6), 1203-1213. [More Information]
  • Cui, T., Martin, J., Marzouk, Y., Solonen, A., Spantini, A. (2014). Likelihood-informed dimension reduction for nonlinear inverse problems. Inverse Problems, 30(11), 114015. [More Information]

2013

  • Cui, T., Ward, N. (2013). Uncertainty quantification for stream depletion tests. Journal of Hydrologic Engineering, 18(12), 1581-1590. [More Information]

2011

  • Cui, T., Fox, C., O'Sullivan, M. (2011). Bayesian calibration of a large‐scale geothermal reservoir model by a new adaptive delayed acceptance Metropolis Hastings algorithm. Water Resources Research, 47(10), W10521-1-W10521-26. [More Information]

Selected Grants

2023

  • Tensor methods for computational statistics, Cui T, Faculty of Science/Faculty Startup Scheme

2021

  • Interface-aware numerical methods for stochastic inverse problems, Cui T, Australian Research Council (ARC)/Discovery Projects (DP)